Vektor Proyeksi Adalah

Vektor Proyeksi Adalah.

Pada artikel kali ini kita akan membahas proyeksi vektor khususnya proyeksi vektor secara ortogonal (tegak lurus). Proyeksi orthogonal suatu vektor ke vektor yang lain, hasilnya berupa vektor. Sedangkan panjang proyeksi vektor orthogonal suatu vektor pada vektor yang lain selalu bernilai bilangan/skalar real positif.

Proyeksi orthogonal vektor $\vec{u}$ pada vektor $\vec{5}$ dapat dinotasikan oleh ${\vec{u}}_{\vec{v}}$ atau $\vec{p}$ dan ditentukan oleh dalil berikut.

Dalil :

  1. Proyeksi skalar orthogonal $\vec{u}$ pada $\vec{five}$ adalah $$\left| \left| \vec{p}\correct| \right|=\frac{\vec{u}\cdot\vec{five}}{\left| \vec{v}\right|}$$
  2. Proyeksi vektor $\vec{u}$ ke vektor $\vec{five}$ adalah vektor $${\vec{u}}_{\vec{v}}=\left( \frac{\vec{u} \cdot \vec{v}}{\left| \vec{v} \right|^2} \right)\vec{5}\text{ atau } \vec{p}=\frac{\vec{u}}{\left| \vec{v} \right|} \left| \left| \vec{p} \right| \right|$$
  3. Panjang proyeksi vektor $\vec{u}$ ke vektor $\vec{v}$ adalah $$ \lvert \vec{u}_{\vec{5}}\rvert=\left| \vec{u}\cdot e_{\vec{v}} \correct| $$ dengan $e_{\vec{v}}$ adalah vektor satuan ke arah $\vec{v}$ atau $\left| \vec{u}_{\vec{five}} \right|=\left| \frac{\vec{u}.\vec{5}}{\left| \vec{five} \right|} \correct|$ .

Contoh 1:

Diketahui $\vec{a}=2\widehat{i}-half dozen\widehat{j}-3\widehat{thou}$ dan $\vec{b}=iv\widehat{i}+2\widehat{j}-4\widehat{1000}$. Tentukan:

  1. Panjang proyeksi vektor $\vec{a}$ pada $\vec{b}$
  2. Proyeksi orthogonal vektor $\vec{a}$ pada $\vec{b}$
  3. Proyeksi orthogonal vektor $\vec{b}$ pada $\vec{a}$

Alternatif Penyelesaan:

  1. Panjang proyeksi vektor $\vec{a}$ pada $\vec{b}$ $$\begin{marshal*} \left| \vec{a}_{\vec{b}} \right|=\left| \frac{\vec{a}.\vec{b}}{\left| \vec{b} \correct|} \right|&=\left| \frac{(two\widehat{i}-6\widehat{j}-three\widehat{g})\cdot (four\widehat{i}+ii\widehat{j}-4\widehat{k})}{\sqrt{{{four}^{2}}+{{2}^{2}}+{{(-4)}^{2}}}} \correct| \\ &=\left| \frac{(2)(iv)+(-6)(ii)+(-3)(-4)}{\sqrt{16+four+16}} \right| \\ &=\left| \frac{8-12+12}{\sqrt{36}} \right|=\left| \frac{8}{half dozen} \right| \cease{align*}$$ $ \therefore \left| \vec{a}_{\vec{b}} \right|=\frac{4}{three}$

  2. Proyeksi orthogonal vektor $\vec{a}$ pada $\vec{b}$
    $\vec{a}_{\vec{b}}=\left| \left| \vec{a}_{\vec{b}} \correct| \correct|\frac{\vec{b}}{\left| \vec{b} \right|}$, karena $\left| \vec{b} \right|=six$ dan $\left| \left| {{\vec{a}}_{\vec{b}}} \correct| \right|=\frac{4}{3}$
    $$\begin{marshal*} \vec{a}_{\vec{b}}&=\frac{4}{3}.\frac{4\widehat{i}+2\widehat{j}-4\widehat{k}}{vi} \\ & =\frac{8}{9}\widehat{i}+\frac{four}{9}\widehat{j}-\frac{eight}{9}\widehat{k} \terminate{marshal*}$$

  3. Proyeksi orthogonal vektor $\vec{b}$ pada $\vec{a}$
    $$\begin{align*}\vec{b}_{\vec{a}}&=\left( \frac{\vec{b}\cdot \vec{a}}{{{\left| \vec{a} \correct|}^{2}}} \right)\vec{a} \\ &=\frac{(4\widehat{i}+2\widehat{j}-iv\widehat{k})\cdot (2\widehat{i}-half-dozen\widehat{j}-3\widehat{thousand})}{{{\left( \sqrt{{{ii}^{2}}+{{(-6)}^{2}}+{{(-3)}^{ii}}} \right)}^{2}}}(two\widehat{i}-6\widehat{j}-3\widehat{one thousand}) \\ &=\frac{(four)(2)+(2)(-6)+(-iv)(-3)}{{{2}^{2}}+{{(-six)}^{2}}+{{(-3)}^{two}}}(2\widehat{i}-vi\widehat{j}-three\widehat{k}) \\ &=\frac{eight}{49}(2\widehat{i}-half-dozen\widehat{j}-iii\widehat{one thousand}) \\ \vec{b}_{\vec{a}}&=\frac{16}{49}\widehat{i}-\frac{48}{49}\widehat{j}-\frac{24}{49}\widehat{grand})\cease{align*}$$

Baca :   Beda Potensial Titik a Dan B

contoh two

Diketahui vektor-vektor $ \vec{u} = (-1,1,-iv) $ dan $ \vec{five} = ( 2, -1,3) $ . Tentukan proyeksi skalar dan proyeksi vektor $ (2\vec{u} + iii\vec{v}) $ pada $ -2\vec{v} $!
Penyelesaian :

misalkan :
$ \vec{a} = (2\vec{u} + 3\vec{five}) = (-2,two,-eight) + ( half dozen, -3,9) = (4, -1 , ane) $
$ \vec{b} = -2 \vec{5} = ( -4, 2,-6) $

  • Menentukan proyeksi skalar $ \vec{a} $ pada $ \vec{b} $
    $$\begin{align*}\text{Proyeksi skalar } &= \frac{\vec{a}.\vec{b}}{|\vec{b}|} \\&= \frac{four.(-4) + (-1). 2 + 1. (-6)}{\sqrt{(-4)^2 + ii^ii + (-six)^2} } \\&= \frac{-16 – 2 – 6}{\sqrt{xvi + 4 + 36 } } \\&= \frac{-24}{\sqrt{56} } \\&= \frac{-24}{56} \sqrt{56} \\&= -\frac{3}{7} \sqrt{56}\end{align*}$$
    $\therefore$ sehingga proyeksi skalarnya adalah $ -\frac{iii}{7} \sqrt{56} $.
  • Menentukan proyeksi vektor $ \vec{a} $ pada $ \vec{b} $
    $$\begin{marshal*}\text{Proyeksi vektor } &= \left( \frac{\vec{a}.\vec{b}}{|\vec{b}|^2} \right) \vec{b}\\&= \left( \frac{-24}{(\sqrt{56})^2} \right) ( -4, 2,-6)\\&= \left( \frac{-24}{56} \right) ( -iv, 2,-half dozen)\\ &= \left( -\frac{3}{7} \correct) ( -four, 2,-half-dozen)\\&= \left( \frac{12}{7}, -\frac{6}{7}, \frac{xviii}{7} \right)\end{align*}$$
    $\therefore$ jadi, proyeksi vektornya adalah $ \left( \frac{12}{7}, -\frac{6}{7}, \frac{xviii}{7} \right) $.

Contoh 3

Diketahui vektor $ \vec{p} = 2\vec{i}+\vec{j} +2\vec{k} $ dan $ \vec{q} = iii\vec{i} + b\vec{j} + \vec{1000} $. Jika $ |\vec{r}| $ adalah panjang proyeksi vektor $ \vec{q} $ pada $ \vec{p} $ dan $ |\vec{r}| = iv $, maka tentukan nilai $ b $!
Penyelesaian :

Diketahui vektor $ \vec{p} = (two, ane, 2) $ dan $ \vec{q} = (3, b, i) $ .

  • Menentukan nilai $ b $ dengan proyeksi ortogonal $ \vec{q} $ pada $ \vec{p} $ :
    $$\begin{align*}\text{Panjang proyeksi } &= \left| \frac{\vec{q}.\vec{p}}{|\vec{p}|} \correct|\\|\vec{r}| &= \left| \frac{\vec{q}.\vec{p}}{|\vec{p}|} \right|\\4 &= \left| \frac{ 2.3 + 1.b + 2.1 }{ \sqrt{2^2 + 1^two + 2^2 } } \right|\\iv &= \left| \frac{ b + 8 }{ \sqrt{9} } \right|\\4 &= \left| \frac{ b + 8 }{ 3 } \right| \\| b + 8 | &= 12 \\ b &= 4 \vee b = -20 \end{marshal*}$$
    Jadi, nilai $ b $ yang mungkin adalah $ b = -twenty $ atau $ b = four $.

Contoh iv

Tentukan proyeksi vektor $ \vec{a} = (2,0,1) $ pada vektor $ \vec{b} $ yang sejajar dan sama panjang tetapi berlawanan arah dengan vektor $ \vec{c} = (0, 2, -2 ) $ !
Penyelesaian :

Diketahui vektor $ \vec{b} = – \vec{c} = -(0, 2, -2) = (0, -2, two) $.

  • Menentukan proyeksi vektor $ \vec{a} $ pada $ \vec{b} $ :
    $$\begin{marshal*}\text{Proyeksi vektor } &= \left( \frac{\vec{a}.\vec{b}}{|\vec{b}|^two} \right) \vec{b} \\&= \left( \frac{2.0 + 0. (-2) + ane.2}{(\sqrt{0^ii + (-2)^two + 2^ii })^2 } \right) (0, -2, two)\\&= \left( \frac{two}{(\sqrt{8 })^2 } \right) (0, -2, 2)\\ &= \left( \frac{two}{8 } \right) (0, -2, 2) \\&= \left( \frac{1}{4 } \correct) (0, -2, two)\\&= \left( 0, -\frac{one}{ii} , \frac{ane}{2} \right) \stop{marshal*}$$
    Jadi, hasil proyeksi vektornya adalah $ \left( 0, -\frac{1}{ii} , \frac{1}{2} \right) $.
Baca :   Pengurangan Pecahan Campuran Dan Pecahan Biasa

Vektor Proyeksi Adalah

Source: https://www.sinmat.my.id/proyeksi-ortogonal-vektor/

Check Also

Contoh Soal Perkalian Vektor

Contoh Soal Perkalian Vektor. Web log Koma – Setelah mempelajari beberapa operasi hitung pada vektor …