Variabel Acak X Menyatakan Banyaknya Angka Pada Pelemparan Empat Keping

Variabel Acak X Menyatakan Banyaknya Angka Pada Pelemparan Empat Keping



Domicile/trending/

Data Yang Melibatkan Variabel Kontinu Adalah

Data Yang Melibatkan Variabel Kontinu Adalah. Tinggi badan sekelompok siswa e. Jumlah kecelakaan per minggu di suatu kota b.

Sebaran Diskrit Variabel Diskrit Dan Kontinue Variabel Diskrit Yang Dimaksud Adalah Variabel Yang Diamati/Diukur Tidak Dapat Diwakili Oleh Seluruh Titik. – Ppt Download from slideplayer.info

Jumlah kendaraan yang melewati persimpangan jalan. • data statistik mengenai tinggi badan (dalam ukuran sentimeter): Artinya, itu adalah variabel yang nilainya dapat ditemukan di antara dua nilai yang tepat, umumnya diwakili oleh angka desimal.

Source: thegorbalsla.com

Contoh data diskrit dan kontinu dalam statistika. Beberapa contoh data kontinu meliputi:

Source: slideplayer.info

Beberapa buku teks pengantar membingungkan variabel rasio dengan variabel kontinu. Bilangan cacah kurang dari 20.

Source: www.zenius.net

Contoh information diskrit dan kontinu dalam statistika. Banyak orang yang keliru memperlakukan data karena ketidakpahaman tentang kedua variabel tersebut.

Source: slideplayer.info

Merupakan analisis regresi yang variabel terikatnya berskala data ordinal. Berat bayi yang baru lahir;

Source: slideplayer.info

Dengan kata lain, information kontinu ialah data yang deretan angkanya merupakan suatu kontinum. Jumlah kendaraan melewati jalur lingkar pembahasan:

Source: www.guru-id.com

Banyak anak dalam sebuah keluarga Contoh information diskrit dan kontinu dalam statistika.

Source: slideplayer.info

Data diskrit dapat dihitung sedangkan data kontinu dapat diukur. Bilangan cacah kurang dari 20.

Source: www.zenius.net

Data diskrit berisi nilai yang berbeda atau terpisah. Sementara waktu revisi dan kecerdasan (variabel independen) mungkin (atau mungkin tidak) menyebabkan perubahan pada nilai tes (variabel dependen), kebalikannya tidak.

Source: world wide web.kibrispdr.org

Data yang melibatkan variabel diskrit adalah. ane) variabel diskrit, 2) variabel continyu.

Source: mathcyber1997.com

Data diskrit berisi nilai yang berbeda atau terpisah. Variable independent merupakan variable yang faktornya diukur, dimanipulasi, atau.

Tinggi badan sekelompok siswa e. Banyak anak dalam sebuah keluarga one) variabel diskrit, 2) variabel continyu.

• Data Statistik Mengenai Tinggi Badan (Dalam Ukuran Sentimeter):

Variabel kontinu adalah jenis variabel kuantitatif yang dapat mengekspresikan nilai dalam jumlah tak terbatas, terlepas dari apakah itu nilai perantara. Artikel ini menjelaskan dengan jelas mengenai. Particular artikel terkait contoh data diskrit dan kontinu dalam statistika.

Permasalahan Yang Termasuk Variabel Kontinu Adalah.

Data diskrit diwakili secara grafis oleh grafik batang sedangkan histogram digunakan untuk mewakili information. 1.data yang melibatkan variabel kontinu adalah a.jumlah kecelakaan per minggu di suatu kota b.bilangan cacah kurang dari 6 c.banyak kesalahan pengetikan pada suatu naskah d.tinggi badan sekelompok siswa e.jumlah kendaraan yang melewati jalur lingkar 2.information yang melibatkan variabel diskrit adalah a.bilangan asli lebih dari 4 b.bilangan bulat. Variabel kontinu merupakan variabel yang datanya bisa dioperasikan secara matematis.

Atribut Adalah Pelengkap Atau Kategori.

Bilangan cacah kurang dari 6 c. Contoh data diskrit dan kontinu dalam statistika. Contoh data diskrit dan kontinu dalam statistika.

Data Kontinu Adalah Tentang Akurasi.

Jumlah kendaraan melewati jalur lingkar pembahasan: Banyak kesalahan pengetikan pada suatu naskah d. Data kontinu memiliki jumlah nilai kemungkinan yang tak terbatas yang dapat dipilih dalam rentang tertentu.

Dhafi Quiz

Observe Answers To Your Multiple Selection Questions (MCQ) Easily at cp.dhafi.link. with Accurate Respond. >>

Ini adalah Daftar Pilihan Jawaban yang Tersedia :

  1. jumlah kecelakaan per minggu di suatu kota
  2. bilangan cacah kurang dari enam
  3. banyak kesalahan pengetikan pada sebuah naskah
  4. tinggi badan sekelompok siswa
  5. jumlah kendaraan yang melewati jalur lingkar

Klik Untuk Melihat Jawaban

Kuis Dhafi Merupakan situs pendidikan pembelajaran online untuk memberikan bantuan dan wawasan kepada siswa yang sedang dalam tahap pembelajaran. mereka akan dapat dengan mudah menemukan jawaban atas pertanyaan di sekolah. Kami berusaha untuk menerbitkan kuis Ensiklopedia yang bermanfaat bagi siswa. Semua fasilitas di sini 100% Gratis untuk kamu. Semoga Situs Kami Bisa Bermanfaat Bagi kamu. Terima kasih telah berkunjung.



Distribusi binomial (binomial distribution)

merupakan salah satu distribusi dengan variabel acak diskrit yang merupakan kajian dari statistika inferensial. Dalam kehidupan sehari-hari, kita sering menemukan kejadian yang kemungkinannya hanya ada dua seperti contoh-contoh berikut.





Baca Juga:

Soal dan Pembahasan – Peluang (Tingkat SMP/Sederajat)







Contoh 1



Pada pelemparan satu buah dadu, hanya ada 2 kemungkinan mata dadu yang muncul: genap atau ganjil.



Contoh 2



Pada pelemparan sekeping koin, hanya ada ii kemungkinan yang muncul: angka atau gambar.



Contoh 3



Saat tendangan penalti pada pertandingan sepak bola, hanya ada two kemungkinan kejadian yang bakal terjadi: gol atau tidak gol.



Contoh iv



Saat pengumuman kelulusan siswa di kelas 6, Nine, atau XII, hanya ada dua kemungkinan kejadian yang bakal terjadi: lulus atau tidak lulus.



Contoh 5



Bayi yang lahir dari rahim induknya hanya memiliki 2 keadaan: laki-laki (jantan) atau perempuan (betina).



Contoh 6



Pada polling Instagram, viewer hanya dapat memilih dari 2 pilihan yang ditawarkan: ya atau tidak.

Perhatikan sebuah eksperimen (percobaan) yang hanya menghasilkan dua kejadian: sebut saja kejadian $A$ dan bukan $A$ (kita notasikan $\overline{A}$, dibaca: A bar), dengan peluang terjadinya kejadian $A$ adalah $P(A) = \blastoff$ (baca: alfa). Jika pada tiap percobaan, nilai $P(A) = \alpha$ selalu tetap, maka percobaan yang berulang-ulang dilakukan seperti itu disebut
Percobaan Bernoulli.

Lakukan percobaan sebanyak $n$ kali secara independen (tidak bergantung). Sebanyak $x$ kali muncul kejadian $A$, sedangkan sisanya, yaitu $n-x,$ muncul kejadian $\overline{A}$. Jika $P(A) = \blastoff$ untuk tiap percobaan, sehingga $P(\overline{A}) = 1-\blastoff,$ maka peluang terjadinya kejadian $A$ sebanyak $X = 10$ kali dari total $due north$ kali percobaan ditentukan oleh:

$$\boxed{P(x) = P(X = x) = \displaystyle \binom{north}{x} \blastoff^ten(1-\alpha)^{n-x}}$$dengan $x = 0,1,2,\cdots, n$ dan $0<\alpha<one.$ Perhatikan bahwa notasi binomial (koefisien binomial)$\displaystyle \binom{n}{x}$ memiliki arti

$$\displaystyle \binom{north}{x} = \dfrac{n!}{x!(northward-x)!} = C(due north,x)$$dengan $$n! = 1 \times ii \times 3 \times \cdots \times (n-one) \times n$$ dan $0! = 1! = 1$ ($n!$ dibaca $n$ faktorial).

Distribusi binomial digunakan untuk menghitung peluang pada suatu percobaan yang dikenal sebagai
percobaan binomial. Adapun syarat percobaan binomial itu dapat dilihat pada kolom berikut.

Syarat Percobaan Binomial

Adapun syarat suatu percobaan termasuk dalam percobaan binomial adalah sebagai berikut.

  1. Percobaan dilakukan sebanyak $north$ kali.
  2. Hanya menghasilkan $2$ kemungkinan untuk setiap percobaan. Sebagai contoh, berhasil atau gagal.
  3. Hasil percobaan harus independen (saling bebas).
  4. Besarnya peluang untuk masing-masing kemungkinan pada setiap percobaan harus sama.

Nah, supaya lebih paham, berikut disajikan sejumlah soal & pembahasan tentang distribusi binomial. Soal juga dapat diunduh dalam tautan berikut:

Download (PDF, 160 KB)



.





Baca:

Materi, Soal dan Pembahasan – Distribusi Poisson







Bagian Pilihan Ganda

Soal Nomor 1

Information yang melibatkan variabel kontinu adalah $\cdots \cdot$

  1. jumlah kecelakaan per minggu di suatu kota
  2. bilangan cacah kurang dari $vi$
  3. banyak kesalahan pengetikan pada suatu naskah
  4. tinggi badan sekelompok siswa
  5. jumlah kendaraan yang melewati jalur lingkar

Variabel diskrit adalah besaran yang memuat nilai-nilai yang dapat dihitung banyaknya.

Variabel kontinu adalah besaran yang memuat nilai-nilai yang tidak dapat dihitung banyaknya (padat).



Cek opsi A:

Jumlah kecelakaan setiap minggunya dapat dicacah menggunakan bilangan bulat dan tentu saja jumlahnya terbatas.

Jadi, datanya melibatkan variabel diskrit.



Cek opsi B:

Bilangan cacah kurang dari $6$ meliputi $0,1,2,3,four$, dan $v$. Jadi, jelas bahwa datanya melibatkan variabel diskrit.



Cek opsi C:

Banyak kesalahan pengetikan dapat ditentukan hanya dengan melibatkan bilangan bulat. Misalnya, kesalahan pengetikannya sebanyak $xiii$ kali dan tentu banyak kesalahannya bersifat terbatas. Jadi, datanya melibatkan variabel diskrit.



Cek opsi D:

Tinggi badan siswa dapat diukur, tetapi hasilnya belum tentu bilangan bulat, melainkan bilangan real (jika dipandang dari segi matematis), meskipun pada kenyataannya tinggi badan seseorang umumnya dibulatkan sampai satu angka di belakang koma saja. Dengan kata lain, data tinggi badan melibatkan variabel kontinu.



Cek opsi E:

Jumlah kendaraan yang melewati jalur lingkar (bundaran) juga tentu dapat dihitung hanya dengan menggunakan bilangan bulat dan sifatnya pasti terbatas. Jadi, datanya melibatkan variabel diskrit.



(Jawaban D)

Soal Nomor 2

Data yang melibatkan variabel diskrit adalah $\cdots \cdot$

A. bilangan asli lebih dari $4$

B. bilangan bulat kurang dari $v$

C. usia penduduk suatu daerah

D. berat badan sekelompok siswa

East. banyak anak dalam sebuah keluarga

Variabel diskrit adalah besaran yang memuat nilai-nilai yang dapat dihitung banyaknya.

Variabel kontinu adalah besaran yang memuat nilai-nilai yang tidak dapat dihitung banyaknya (padat).



Cek opsi A:

Ada tak terhingga banyaknya bilangan asli yang lebih dari $4$. Jadi, datanya tergolong variabel kontinu.



Cek opsi B:

Ada tak terhingga banyaknya bilangan bulat yang kurang dari $five$. Jadi, datanya tergolong variabel kontinu.



Cek opsi C:

Usia penduduk sebenarnya tidak cukup jika hanya menggunakan ukuran bilangan bulat dengan satuan tahun. Realitanya, usia seseorang dapat diukur sampai satuan milidetik. Dengan demikian, datanya melibatkan variabel kontinu.



Cek opsi D:

Pengukuran berat badan tidak cukup bila hanya melibatkan bilangan bulat. Untuk itu, datanya melibatkan variabel kontinu.



Cek opsi East:

Banyak anak dalam sebuah keluarga jelas hanya melibatkan bilangan bulat dan jumlahnya tentu terbatas. Jadi, datanya melibatkan variabel diskrit.



(Jawaban E)

Soal Nomor iii

Beni melemparkan sekeping uang logam sebanyak tiga kali. Variabel acak $10$ menyatakan banyak hasil sisi gambar yang diperoleh. Hasil yang mungkin untuk $10$ adalah $\cdots \cdot$

A. $\{0,1,ii,three,four\}$

B. $\{0,one,2,iii\}$

C. $\{0,1,2\}$

D. $\{1,two,3\}$

E. $\{1,ii\}$

Dalam pelemparan sekeping uang logam sebanyak $three$ kali, ada kemungkinan kita sama sekali tidak memperoleh gambar, bisa juga kita hanya mendapat $1$ gambar, $2$ gambar, dan bila beruntung, kita justru mendapat $3$ gambar sekaligus.

Baca :   Segitiga Sama Sisi Mempunyai Simetri Putar

Jadi, hasil yang mungkin untuk $X$ adalah $\{0,1,2,3\}$.



(Jawaban B)

Soal Nomor 4

Dewi melemparkan lima keping uang logam. Variabel acak $X$ menyatakan banyak hasil sisi angka yang diperoleh. Hasil yang mungkin untuk $X$ adalah $\cdots \cdot$

A. $\{1,2,3,iv,5\}$

B. $\{0,1,2,3,4\}$

C. $\{0,1,two,3,4,5\}$

D. $\{1,2,iii,iv,five,6,7,8,9,ten\}$

East. $\{0,1,2,3,four,5,half-dozen,7,8,nine,10\}$

Dalam pelemparan lima keping uang logam secara bersamaan, ada kemungkinan kita sama sekali tidak memperoleh angka, bisa juga kita hanya mendapat $i$ angka, $2$ angka, $3$ angka, $4$ angka, dan bila beruntung, kita justru mendapat $five$ angka sekaligus.

Jadi, hasil yang mungkin untuk $10$ adalah $\{0,1,two,3,4,5\}$.



(Jawaban C)

Soal Nomor 5

Anita melambungkan dua buah dadu secara bersamaan. Jika variabel acak $X$ menyatakan jumlah mata dadu yang muncul, maka $10 = \cdots \cdot$

A. $\{two, 3, 4, 5, vi, 7, 8, 9, 10, 11, 12\}$

B. $\{1, 2, 3, 4, 5, six, seven, eight, 9, ten\}$

C. $\{0, i, 2, 3, 4, 5, half-dozen, 7, eight\}$

D. $\{ane, 2, iii, 4, 5, vi\}$

E. $\{0,one, two, 3, 4, 5\}$

Dadu memiliki $vi$ sisi dengan mata dadu $i$ sampai $six$.

Pada pelemparan dua buah dadu, jumlah mata dadu yang paling kecil adalah $i+1=2$, sedangkan jumlah mata dadu yang paling besar adalah $6+six=12$. Jadi, jumlah mata dadu yang mungkin kita dapatkan atas hasil pelemparan (variabel acak $X$) adalah $\{ii, 3, four, five, half dozen, vii, 8, ix, ten, eleven, 12\}$.



(Jawaban A)

Soal Nomor 6

Deni melambungkan sebuah dadu satu kali. Jika variabel acak $10$ menyatakan mata dadu yang muncul, maka $X = \cdots \cdot$

A. $\{0,1,2,3,4,5,6\}$

B. $\{1,ii,3,4,five,6\}$

C. $\{0,1,2,three,four,five\}$

D. $\{0,1\}$

E. $\{half-dozen\}$

Dadu memiliki $6$ sisi dengan mata dadu $1$ sampai $half dozen$.

Jadi, jelas bahwa jumlah mata dadu yang mungkin kita dapatkan atas hasil pelemparan (variabel acak $X$) adalah $\{1, 2, iii, iv, 5, 6\}$.



(Jawaban B)

Soal Nomor 7

Sepasang pengantin baru merencanakan mempunyai dua anak. Jika variabel $X$ menyatakan banyak anak perempuan, maka $10 = \cdots \cdot$

A. $\{0,1\}$

B. $\{ane, 2\}$

C. $\{0,i,2\}$

D. $\{0,1,2,three\}$

E. $\{0,1,ii,three,4\}$

Ada kemungkinan dua anaknya tidak ada satupun yang perempuan, ada juga kemungkinan bahwa anaknya laki-laki dan perempuan, dan terakhir keduanya perempuan. Dengan demikian, $X = \{0,ane,2\}$.



(Jawaban C)

Soal Nomor viii

Andi mengerjakan $6$ butir soal. Variabel acak $X$ menyatakan banyak soal yang dikerjakan dengan benar. Hasil yang mungkin untuk $X$ adalah $\cdots \cdot$

A. $\{0,1,2,iii,4,v,6\}$

B. $\{one,2,3,4,v,half dozen\}$

C. $\{0,one,2,three,4,5\}$

D. $\{0,6\}$

E. $\{half dozen\}$

Ada kemungkinan Andi menjawab salah pada semua soal, bisa juga hanya $1$ soal yang benar, $2$ soal benar, $3$ soal benar, $4$ soal benar, $five$ soal benar, dan mungkin saja semua soal dijawab benar olehnya. Jadi, $X = \{0,ane,two,3,four,5,6\}$



(Jawaban A)

Soal Nomor 9

Perhatikan tabel distribusi frekuensi variabel acak $10$ berikut.

$$\begin{array}{|c|c|c|c|c|c|} \hline x & ane & 2 & 3 & 4 & five \\ \hline P(10=ten) & \dfrac16 & \dfrac14 & k & \dfrac{ane}{12} & \dfrac13 \\ \hline \end{assortment}$$Nilai $chiliad=\cdots \cdot$

A. $\dfrac{1}{12}$                    C. $\dfrac14$                 Eastward. $\dfrac12$
B. $\dfrac16$                      D. $\dfrac13$

Pada distribusi frekuensi variabel acak tersebut, berlaku $P(X \leq 5) = 1.$

Ini artinya, $P(X=one)+P(X=two)+P(X=3)+$  $P(Ten=four)+P(X=five) = i$ sehingga kita peroleh
$\brainstorm{aligned} \dfrac16 + \dfrac14 + k + \dfrac{1}{12} + \dfrac13 & = one \\ yard + \dfrac{2+iii+1+4}{12} & = 1 \\ m + \dfrac56 & = i \\ k & = \dfrac16 \terminate{aligned}$

Jadi, nilai $\boxed{grand = \dfrac16}$



(Jawaban B)

Soal Nomor ten

Sepasang pengantin baru merencanakan mempunyai tiga anak. Variabel acak $X$ menyatakan banyak anak perempuan. Nilai $P(10 = 1)$ adalah $\cdots \cdot$

A. $\dfrac18$                    C. $\dfrac38$                    E. $\dfrac58$
B. $\dfrac28$                    D. $\dfrac48$

Notasi $P(Ten=1)$ artinya peluang pengantin baru mendapatkan seorang anak perempuan dari tiga anak.

Titik sampelnya adalah $(P, 50, L)$, $(Fifty, P, L)$, dan $(L, L, P)$ dengan $L, P$ masing-masing menyatakan anak laki-laki dan perempuan. Banyak anggota ruang sampel seluruhnya ada $2^iii = 8$. Jadi, nilai dari $P(X=1)$ adalah $\boxed{\dfrac38}$



(Jawaban C)

Soal Nomor eleven

Doni melakukan pelemparan sebuah dadu. Variabel $X$ menyatakan mata dadu yang muncul. Nilai $P(X = 1)$ adalah $\cdots \cdot$

A. $\dfrac56$                     C. $\dfrac12$                    E. $\dfrac16$
B. $\dfrac23$                    D. $\dfrac13$

Semua mata dadu pada pelemparan sebuah dadu (yang diasumsikan setimbang) memiliki peluang yang sama untuk muncul.

Karena dadu memiliki $6$ sisi, maka peluang munculnya mata dadu $1$ adalah

$P(10 = i) = \dfrac16.$

Tabel distribusi frekuensi variabel acak $X$ dapat dilihat di bawah.

$$\begin{array}{|c|c|c|c|c|c|c|} \hline ten & 1 & 2 & 3 & four & five & half-dozen \\ \hline P(X=ten) & \dfrac16 & \dfrac16 & \dfrac16 & \dfrac16 & \dfrac16 & \dfrac16 \\ \hline \stop{array}$$Jadi, nilai $\boxed{P(X=1) = \dfrac16}$



(Jawaban Due east)

Soal Nomor 12

Sebuah kantong berisi $3$ butir kelereng merah dan $v$ butir kelereng putih. Dari dalam kantong tersebut diambil $ii$ butir kelereng sekaligus. Variabel acak $10$ menyatakan banyak kelereng merah yang terambil. Nilai $P(10=2)$ adalah $\cdots \cdot$

A. $\dfrac{3}{28}$                C. $\dfrac{vii}{28}$                  E. $\dfrac{11}{28}$

B. $\dfrac{5}{28}$               D. $\dfrac{nine}{28}$

Notasi $P(X=2)$ menyatakan peluang terambilnya $two$ butir kelereng merah.

Banyak cara pengambilan $two$ dari $3$ butir kelereng merah dapat ditentukan dengan aturan kombinasi, yaitu

$C^3_2 = \dfrac{3!}{2! \cdot 1! } = iii.$

Banyak cara pengambilan $2$ dari $3+v=eight$ butir kelereng yang ada adalah

$C^8_2 = \dfrac{viii!}{6! \cdot 2!} = 28.$

Jadi, peluang terambilnya $2$ butir kelereng merah adalah $\boxed{P(X=2) = \dfrac{3}{28}}$



(Jawaban A)

Soal Nomor 13

Variabel acak $X$ menyatakan banyak hasil gambar pada pelemparan dua keping mata uang logam. Nilai $P(Ten=1)$ adalah $\cdots \cdot$

A. $\dfrac34$                    C. $\dfrac12$                   E. $\dfrac14$
B. $\dfrac23$                   D. $\dfrac13$

Notasi $P(X=1)$ menyatakan peluang munculnya satu gambar pada pelemparan dua keping mata uang logam.

Ruang sampel dari pelemparan dua keping mata uang logam adalah $\{(A, A), (A, M), (Thou, A), (G, G)\}$. Banyak anggota ruang sampelnya ada $4$.

Titik sampel kejadian yang diinginkan adalah $(A, Yard)$ dan $(Thousand, A)$, ada $ii$. Jadi, peluang munculnya satu gambar pada pelemparan dua keping mata uang logam adalah $\boxed{P(X=1) = \dfrac24 = \dfrac12}$



(Jawaban C)

Soal Nomor fourteen

Dua kotak masing-masing berisi dua kartu berwarna merah dan empat kartu berwarna biru. Kartu merah bernomor $one$ dan $2$. Kartu biru bernomor $3$ sampai $6$. Dari setiap kotak diambil satu kartu secara acak. Variabel acak $10$ menyatakan jumlah kedua nomor kartu yang terambil. Nilai $P(X \leq 5)$ adalah $\cdots \cdot$

A. $\dfrac18$                    C. $\dfrac38$                    East. $\dfrac58$
B. $\dfrac28$                    D. $\dfrac48$

Notasi $P(X \leq 5)$ artinya peluang mendapatkan dua kartu dengan jumlah nomornya kurang dari atau sama dengan $5$.

Ada $ii$ kartu di kotak pertama dan $4$ kartu di kotak kedua.

Banyak anggota ruang sampel pengambilan kartu ini sebanyak $\boxed{2 \times 4 = viii}$.

Titik sampel dari kejadian yang diharapkan adalah $(1, 3), (one, iv)$, dan $(two, 3)$, ada sebanyak $\boxed{3}$.

Catatan: $(ane,three)$ maksudnya adalah kita mendapat kartu bernomor $i$ di kotak pertama dan kartu bernomor $3$ di kotak kedua.

Jadi, peluangnya sebesar $\boxed{P(Ten \leq 5) = \dfrac38}$



(Jawaban C)

Soal Nomor 15

Sebuah kotak berisi $three$ bola merah dan $5$ bola putih. Dari dalam kotak tersebut diambil $two$ bola sekaligus. Variabel acak $X$ menyatakan banyak bola putih yang terambil. Nilai $P(X \leq 1)$ adalah $\cdots \cdot$

A. $\dfrac{3}{28}$                           D. $\dfrac{15}{28}$

B. $\dfrac{10}{28}$                           E. $\dfrac{16}{28}$

C. $\dfrac{13}{28}$

$P(X \leq 1)$ artinya peluang mendapatkan paling banyak $1$ bola putih. Perhatikan bahwa

$P(Ten \leq ane) = P(10 = 0) + P(10 = 1).$

Untuk itu, akan dicari peluang masing-masing kasus, lalu dijumlahkan.

$\bigstar$ $P(X = 0)$

Karena tidak ada bola putih yang diambil, maka kedua bola yang diambil pasti berwarna merah. Jadi, dapat dianggap kita ingin mendapatkan $2$ bola merah dari $three$ bola merah yang ada di kotak. Caranya ada sebanyak

$C^3_2 = \dfrac{3!}{2! \cdot 1!} = 3.$

Banyak cara pengambilan $2$ dari $3+5=8$ bola seluruhnya dinyatakan oleh

$C^8_2 = \dfrac{8!}{half-dozen! \cdot 2!} = \dfrac{viii \times 7 \times \cancel{6!}}{\cancel{6!} \times 2} = 28$

Jadi, $P(X=0) = \dfrac{three}{28}.$

$\bigstar$ $P(X = 1)$

$P(X=1)$ artinya peluang mendapatkan sebuah bola putih dan sisanya sebuah bola merah. Banyak cara pengambilannya dinyatakan oleh

$C^3_1 \cdot C^5_1 = \dfrac{3!}{ii! \cdot ane!} \cdot \dfrac{5!}{four! \cdot 1!} = 3 \cdot 5=15$

Baca :   Berikut Proses Yang Tidak Memiliki Hubungan Pada Proses Koloid Yaitu

Banyak cara pengambilan $two$ dari $3+five=8$ bola seluruhnya dinyatakan oleh

$C^8_2 = \dfrac{8!}{six! \cdot 2!} = \dfrac{8 \times vii \times \cancel{6!}}{\abolish{6!} \times 2} = 28.$

Jadi, $P(X=i) = \dfrac{xv}{28}$.

Dengan demikian, kita peroleh

$\begin{aligned} P(X \leq one) & = P(Ten=0)+P(10=ane) \\ & = \dfrac{3}{28} + \dfrac{15}{28} = \dfrac{18}{28} \finish{aligned}$



(Jawaban E)

Soal Nomor 16

Variabel acak $X$ menyatakan mata dadu yang muncul pada pelemparan sebuah dadu. Nilai $P(1 \leq x \leq 4)$ adalah $\cdots \cdot$

A. $\dfrac16$                    C. $\dfrac12$                  Due east. $\dfrac56$
B. $\dfrac13$                   D. $\dfrac23$

Notasi $P(1 \leq X \leq 4)$ artinya peluang memperoleh mata dadu $1$ sampai $4$ pada pelemparan sebuah dadu. Karena peluang munculnya masing-masing mata dadu pasti sama, yaitu $\dfrac16$, maka

$$\brainstorm{aligned} P(one \leq X \leq 4) & = P(X=1)+P(X=2)+P(X=3)+P(X=four) \\ & = \dfrac16+\dfrac16+\dfrac16+\dfrac16 = \dfrac23 \end{aligned}$$Jadi, nilai dari $\boxed{P(1 \leq X \leq 4) = \dfrac23}$



(Jawaban D)

Soal Nomor 17

Variabel acak $X$ menyatakan banyak hasil angka pada pelemparan tiga keping mata uang logam secara bersamaan. Nilai $P(ane \leq X \leq 2)$ adalah $\cdots \cdot$

A. $\dfrac18$                     C. $\dfrac12$                   Eastward. $\dfrac34$
B. $\dfrac38$                    D. $\dfrac58$

Notasi $P(1 \leq Ten \leq 2)$ menyatakan peluang diperolehnya $1$ atau $2$ angka pada pelemparan tiga keping uang logam tersebut.

Titik sampel dari pelemparan tiga keping uang logam dinyatakan dalam tabel berikut.

$$\brainstorm{array}{|c|c|c|c|} \hline (A, A, A) & \color{blue}{(A, A, G)} & \color{blue}{(A, Thousand, A)} & \color{blue}{(K, A, A)} \\ \hline \color{red}{(A, G, 1000)} & \color{ruby}{(One thousand, A, G)} & \colour{cerise}{(G, G, A)} & (G, Chiliad, G) \\ \hline \end{array}$$Dari tabel di atas, tampak bahwa ada $iii+3=6$ titik sampel yang memenuhi kejadian yang diharapkan. Dengan demikian,

$$\brainstorm{aligned} P(1 \leq 10 \leq 2) & = P(X=1) + P(X=2) \\ & = \dfrac{iii}{8} + \dfrac38 = \dfrac34 \end{aligned}$$(Jawaban E)

Soal Nomor 18

Diketahui fungsi peluang variabel $Ten$ berikut.

$$f(x) = \begin{cases} 0; &\text{untuk}~x~\text{yang lain} \\ \dfrac{x}{ten}; &\text{untuk}~x=1,2,3,4 \end{cases}$$Nilai $P(ii \leq X \leq four)$ adalah $\cdots \cdot$

A. $\dfrac25$                 C. $\dfrac35$                  Due east. $\dfrac{9}{10}$

B. $\dfrac12$                 D. $\dfrac{vii}{10}$

Notasi $P(2 \leq X \leq 4)$ menyatakan peluang dengan variabel acak $Ten$ yang sama dengan $P(X=two)+P(10=3)+P(X=4)$.

Berdasarkan fungsi peluang variabel acak $Ten$, untuk semua $ten$ dari $ii$ sampai $4$, rumus fungsi yang dipakai adalah $f(x) = \dfrac{x}{10}$. Kita tuliskan,

$\brainstorm{aligned} & P(X=2)+P(Ten=3)+P(Ten=4) \\ & = \dfrac{2}{10} + \dfrac{3}{x} + \dfrac{4}{ten} \\ & = \dfrac{9}{x} \terminate{aligned}$

Jadi, nilai $\boxed{P(ii \leq X \leq 4) = \dfrac{ix}{x}}$



(Jawaban Due east)

Soal Nomor xix

Perhatikan tabel distribusi frekuensi variabel acak $X$ berikut.

$$\renewcommand{\arraystretch}{2.2} \begin{array}{|c|c|c|c|c|c|c|} \hline ten & ane & ii & 3 & 4 & 5 & 6 \\ \hline P(X=10) & \dfrac{1}{12} & \dfrac16 & \dfrac14 & \dfrac14 & \dfrac16 & \dfrac{1}{12} \\ \hline \end{array}$$Nilai dari $P(4 \leq X \leq 6)$ adalah $\cdots \cdot$

A. $\dfrac{i}{12}$                   C. $\dfrac14$                 Eastward. $\dfrac12$
B. $\dfrac16$                     D. $\dfrac13$

Berdasarkan tabel distribusi frekuensi di atas, diketahui bahwa

$\brainstorm{aligned} P(10=four) & = \dfrac14 \\ P(X=5) & = \dfrac16 \\ P(10=6) & = \dfrac{1}{12} \end{aligned}$

Dengan demikian,

$$\begin{aligned} P(4 \leq X \leq 6) & = P(X=four)+P(Ten=5)+P(10=vi) \\ & = \dfrac14+\dfrac16+\dfrac{i}{12} \\ & = \dfrac{3+ii+1}{12} = \dfrac12 \end{aligned}$$Jadi, nilai dari $\boxed{P(4 \leq X \leq half-dozen) = \dfrac{ane}{ii}}$



(Jawaban E)

Soal Nomor twenty

Variabel acak $10$ menyatakan jumlah mata dadu yang muncul pada pelemparan dua buah dadu secara bersamaan. Nilai $P(5 \leq X \leq 12)$ adalah $\cdots \cdot$

A. $\dfrac16$                     C. $\dfrac12$                  E. $\dfrac56$

B. $\dfrac13$                    D. $\dfrac34$

Jumlah mata dadu yang mungkin didapat dari pelemparan dua buah dadu adalah $ii$ sampai $12$.

Notasi $P(5 \leq 10 \leq 12)$ menyatakan peluang diperolehnya jumlah mata dadu $5, 6, seven, 8, 9, 10, 11$, atau $12$.

Gunakan tabel berikut untuk menentukan banyak titik sampel yang sesuai dengan kejadian yang diharapkan.

$$\brainstorm{assortment}{|c|c|c|} \hline \text{Jumlah Mata Da}\text{du} & \text{Titik Sam}\text{pel} & \text{Banyak Titik Sam}\text{pel} \\ \hline v & (1, 4), (iv, 1), (2, 3), (iii, ii) & 4 \\ \hline half-dozen & (i, five), (5, 1), (2, 4), (4, two), (three, three) & 5 \\ \hline vii & (ane, 6), (6, one), (ii, 5), (v, ii), (iii, 4), (four, 3) & 6 \\ \hline 8 & (2, half dozen), (half-dozen, 2), (3, 5), (5, 3), (4, 4) & 5 \\ \hline 9 & (iii, half dozen), (vi, three), (4, 5), (5, 4) & four \\ \hline 10 & (4, 6), (6, 4), (v,v) & three \\ \hline eleven & (5, half dozen), (half dozen, 5) & ii \\ \hline 12 & (vi, 6) & 1 \\ \hline \end{array}$$Jumlah titik sampelnya adalah $\boxed{4+5+6+5+4+3+ii+1=30}$.

Banyak anggota ruang sampel pada pelemparan dua buah dadu adalah $\boxed{6 \times 6 = 36}$.

Jadi, nilai dari $\boxed{P(5 \leq X \leq 12) = \dfrac{30}{36} = \dfrac56}$



(Jawaban E)





Baca:

Soal dan Pembahasan – Distribusi Normal




Soal Nomor 21

Dua buah dadu dilambungkan sekali. Jika $X$ menyatakan banyak dadu yang mata dadunya lebih dari $4$, maka tabel distribusi peluang yang tepat untuk variabel acak $10$ adalah $\cdots \cdot$

A. $\brainstorm{array}{|c|c|c|c|} \hline x & 0 & i & 2 \\ \hline f(ten) & \dfrac49 & \dfrac29 & \dfrac19 \\ \hline \finish{assortment}$

B. $\begin{array}{|c|c|c|c|} \hline x & 0 & one & two \\ \hline f(ten) & \dfrac49 & \dfrac39 & \dfrac29 \\ \hline \end{array}$

C. $\brainstorm{assortment}{|c|c|c|c|} \hline x & 0 & 1 & 2 \\ \hline f(x) & \dfrac39 & \dfrac49 & \dfrac29 \\ \hline \terminate{array}$

D. $\brainstorm{array}{|c|c|c|c|} \hline x & 0 & 1 & 2 \\ \hline f(x) & \dfrac49 & \dfrac49 & \dfrac19 \\ \hline \end{array}$

E. $\brainstorm{array}{|c|c|c|c|} \hline ten & 0 & i & 2 \\ \hline f(ten) & \dfrac59 & \dfrac39 & \dfrac19 \\ \hline \end{array}$

Total anggota ruang sampel pada pelemparan $2$ mata dadu adalah $6^2 = 36$.

Perhatikan bahwa $f(x)$ menyatakan peluang munculnya $10$ dadu dengan mata dadu lebih dari $4$.

Apabila $x = 2$ (artinya kedua dadu yang muncul menampakkan sisi dengan lebih dari $4$ mata dadu), maka anggota ruang sampel yang mungkin adalah $\{(5, five), (five, 6), (half-dozen, v), (6, half-dozen)\}$ sehingga $f(two) = \dfrac{4}{36} = \dfrac19$.

Apabila $10 = ane$ (artinya terdapat tepat satu dadu yang mata dadunya lebih dari $iv$), maka anggota ruang sampel yang mungkin berbentuk $(a, b)$ dengan $a = five, 6$, sedangkan $b = one, 2, 3, iv$ (dan sebaliknya), sehingga terdapat $2 \times 2 \times 4 = 16$ anggota. Dengan demikian, $f(i) = \dfrac{16}{36} = \dfrac49.$

Sisa anggota ruang sampelnya adalah saat $x = 0$ dengan $f(0) = \dfrac{36-four-sixteen}{36} = \dfrac49.$

Jadi, tabel distribusi frekuensi yang sesuai untuk variabel acak $X$ adalah sebagai berikut.

$\begin{array}{|c|c|c|c|} \hline ten & 0 & ane & ii \\ \hline f(x) & \dfrac49 & \dfrac49 & \dfrac19 \\ \hline \end{assortment}$



(Jawaban D)

Soal Nomor 22

Sebuah dadu dilemparkan sebanyak $4$ kali. Peluang muncul mata dadu berkelipatan $three$ sebanyak $two$ kali adalah $\cdots \cdot$

A. $0,3951$                        D. $0,0988$

B. $0,2963$                        E. $0,0154$

C. $0,1157$

Kasus ini tergolong kasus distribusi binomial. Dua kejadian yang mungkin terjadi adalah munculnya mata dadu berkelipatan $3$ dan tidak munculnya mata dadu berkelipatan $3$.

Misalkan kejadian $A$ adalah kejadian munculnya mata dadu berkelipatan $three$, yaitu mata dadu $iii$ atau $6$, sehingga $P(A) = \blastoff = \dfrac26 = \dfrac13$.

Peluang dua $(x = 2)$ dari empat kali pelemparan sebuah dadu muncul mata dadu kelipatan $3$ sebesar

$\begin{aligned} P(X = x) & =\displaystyle \binom{n}{10} \alpha^ten(ane-\alpha)^{n-ten} \\ P(X = 2) & = \displaystyle \binom{4}{2} \left(\dfrac13\right)^two\left(one-\dfrac13\right)^{iv-two} \\ & = \dfrac{iv!}{two! \cdot two!} \times \dfrac{1^2}{3^2} \times \dfrac{2^two}{three^2} \\ & = 6 \times \dfrac19 \times \dfrac49 \\ & = 0,2963 \end{aligned}$

Jadi, peluang kejadian tersebut adalah $\boxed{0,2963}$



(Jawaban B)

Soal Nomor 23

Andri mengerjakan $10$ soal pilihan benar salah. Peluang Andri menjawab dengan benar sebanyak $vi$ soal adalah $\cdots \cdot$

A. $0,1816$                       D. $0,3145$

B. $0,2051$                       E. $0,3264$

C. $0,2672$

Kasus ini tergolong kasus distribusi binomial. Dua kejadian yang mungkin terjadi adalah menjawab soal dengan benar dan salah.

Misalkan kejadian $A$ adalah kejadian Andri menjawab soal dengan benar, sehingga

$P(A) = \alpha = \dfrac12$

Peluang enam $(x = half-dozen)$ dari sepuluh soal dijawab benar oleh Andri sebesar

$$\begin{aligned} P(X = x) & =\displaystyle \binom{n}{x} \alpha^x(1-\blastoff)^{n-x} \\ P(X = 6) & = \displaystyle \binom{10}{six} \left(\dfrac12\correct)^vi\left(1-\dfrac12\right)^{10-6} \\ & = \dfrac{10!}{vi! \times 4!} \times \dfrac{1^6}{2^6} \times \dfrac{ane^iv}{2^4} \\ & = \dfrac{10 \times \cancelto{three}{nine} \times \bcancel{8} \times 7 \times \cancel{6!}}{\cancel{6!} \times \bcancel{4} \times \cancel{3} \times \bcancel{2}} \times \dfrac{1}{64} \times \dfrac{1}{16} \\ & = 0,2051 \cease{aligned}$$Jadi, peluang kejadian tersebut adalah $\boxed{0,2051}$



(Jawaban B)

Soal Nomor 24

Dalam sebuah kantong terdapat $8$ kelereng dengan $3$ kelereng di antaranya berwarna biru. Dari kantong diambil satu kelereng berturut-turut sebanyak $5$ kali. Pada setiap pengambilan, kelereng dikembalikan lagi. Peluang diperoleh hasil pengambilan kelereng biru sebanyak tiga kali adalah $\cdots \cdot$

Baca :   Contoh Garnish Dari Tomat

A. $0,3418$                     D. $0,1984$

B. $0,3264$                     Eastward. $0,1870$

C. $0,2060$

Kasus ini tergolong kasus distribusi binomial. Dua kejadian yang mungkin terjadi adalah mendapatkan kelereng biru dan tidak mendapatkan kelereng biru.

Misalkan kejadian $A$ adalah kejadian terambilnya kelereng biru, sehingga

$P(A) = \alpha = \dfrac{3}{viii}$

Peluang tiga $(x = iii)$ dari lima kali pengambilan mendapatkan kelereng biru sebesar

$\begin{aligned} P(X = x) & =\displaystyle \binom{n}{x} \alpha^x(one-\alpha)^{northward-ten} \\ P(X = 3) & = \displaystyle \binom{5}{iii} \left(\dfrac{three}{8}\right)^3\left(one-\dfrac{3}{8}\correct)^{5-3} \\ & = \dfrac{5!}{3! \times 2!} \times \dfrac{3^three}{8^iii} \times \dfrac{v^2}{eight^two} \\ & = 10 \times \dfrac{27}{512} \times \dfrac{25}{64} \\ & \approx 0,2060 \end{aligned}$

Jadi, peluang kejadian tersebut adalah $\boxed{0,2060}$



(Jawaban C)

Soal Nomor 25

Sebuah perusahaan membutuhkan beberapa karyawan baru melalui tes seleksi karyawan. Dari seluruh peserta tes, hanya $40\%$ yang lolos. Dari para peserta tes tersebut diambil sampel secara acak sebanyak $twenty$ orang. Peluang sampel terdiri dari peserta lolos sebanyak $5$ orang adalah $\cdots \cdot$
(Informasi: $(0,4)^5 = 0,01024$ dan $(0,6)^{15} = 0,00047$)

A. $0,0746$                         D. $0,1659$

B. $0,1244$                         East. $0,1797$

C. $0,1597$

Kasus ini tergolong kasus distribusi binomial. Dua kejadian yang mungkin terjadi adalah mendapatkan peserta yang lolos dan tidak lolos dari tes seleksi.

Misalkan kejadian $A$ adalah kejadian mendapatkan peserta yang lolos tes sehingga

$P(A) = \alpha = 40\% = 0,4$

Peluang lima $(x = 5)$ dari dua puluh orang yang terpilih sebagai sampel merupakan peserta yang lolos dinyatakan sebagai berikut

$$\begin{aligned} P(X = x) & =\displaystyle \binom{n}{x} \alpha^x(1-\alpha)^{due north-ten} \\ P(X = 5) & = \displaystyle \binom{xx}{5} \left(0,4\right)^{v}\left(i-0,4\right)^{20-5} \\ & = \dfrac{20!}{15! \times 5!} \times (0,4)^5 \times (0,6)^{15} \\ & = \dfrac{20 \times 19 \times xviii \times 17 \times sixteen \times \cancel{15!}}{\cancel{15!} \times five \times 4 \times 3 \times two} \times 0,01024 \times 0,00047 \\ & = xv.504 \times 0,01024 \times 0,00047 = 0,0746 \end{aligned}$$Jadi, peluang kejadian tersebut adalah $\boxed{0,0746}$



(Jawaban A)


Soal Nomor 26

Diketahui $P(x) = C(four, x) \cdot (0,6)^ten \cdot (0,4)^{4-x}$ untuk $x=0,one,2,3,4$. Nilai $P(2 \leq Ten \leq 4)$ adalah $\cdots \cdot$

A. $0,8208$                         D. $0,1792$

B. $0,6912$                         E. $0,1296$

C. $0,3456$

Notasi $P(ii \leq X \leq 4)$ sama dengan $P(X=2)+P(10=3)+P(X=4)$. Untuk itu, akan dicari masing-masing dari nilai-nilai tersebut. $$\begin{aligned} P(X=2) & = C(4, two) \cdot (0,6)^2 \cdot (0,4)^{4-two} \\ & = \dfrac{iv!}{2! \cdot ii!} \cdot 0,36 \cdot 0,16 \\ & = 6 \cdot 0,36 \cdot 0,xvi = 0,3456 \cease{aligned}$ $\begin{aligned} P(X=3) & = C(4, 3) \cdot (0,half-dozen)^three \cdot (0,4)^{4-three} \\ & = \dfrac{four!}{3! \cdot 1!} \cdot 0,216 \cdot 0,4 \\ & = 4 \cdot 0,36 \cdot 0,16 = 0,3456 \end{aligned}$ $\begin{aligned} P(Ten=four) & = C(four, 4) \cdot (0,6)^4 \cdot (0,iv)^{4-4} \\ & = \dfrac{4!}{4! \cdot 0!} \cdot 0,1296 \cdot 1 \\ & = 1 \cdot 0,1296 \cdot 0,16 = 0,1296 \terminate{aligned}$$Dengan demikian,

$$\begin{aligned} P(ii \leq X \leq four) & = P(X=two) + P(Ten=3) + P(X=four) \\ & = 0,3456+0,3456+0,1296 \\ & = 0,8208 \end{aligned}$$(Jawaban A)

Soal Nomor 27

Sekeping koin dilempar $5$ kali. Peluang mendapatkan sisi gambar tepat $three$ kali adalah $\cdots$

A. $\dfrac{6}{54}$                   C. $\dfrac{8}{36}$                 E. $\dfrac{iii}{18}$

B. $\dfrac{10}{32}$                  D. $\dfrac{5}{18}$

Kasus ini mengarah pada percobaan binomial karena peristiwa pelemparan koin hanya memunculkan $2$ kejadian, yaitu munculnya angka dan munculnya gambar, masing-masing dengan peluang yang sama, yaitu $\dfrac12$. Diketahui bahwa:

$\boxed{\brainstorm{aligned} north & = five \\ x & = 3 \\ \alpha & = \dfrac12 \cease{aligned}}$

Dengan demikian,

$\brainstorm{aligned} P(10 = x) & = \displaystyle \binom{northward}{x} \alpha^x\left(1-\alpha\right)^{n-10} \\ P(X = 3) & = \displaystyle \binom{five}{3} \left(\dfrac12\correct)^3\left(1-\dfrac12\correct)^{v-3} \\ & = \dfrac{5!}{3! \cdot 2!} \left(\dfrac12\correct)^{five}\\ & = x \cdot \dfrac{one}{32} = \dfrac{x}{32} \end{aligned}$

Jadi, peluang munculnya gambar tepat $3$ kali dari pelemparan koin sebanyak $5$ kali adalah $\boxed{\dfrac{10}{32}}$



(Jawaban B)

Soal Nomor 28

Seorang penjaga gawang profesional mampu menahan tendangan penalti dengan peluang $\dfrac35$. Dalam sebuah kesempatan dilakukan $5$ kali tendangan. Peluang penjaga gawang mampu menahan $iii$ kali tendangan penalti tersebut adalah $\cdots$

A. $\dfrac{180}{625}$                    D. $\dfrac{230}{625}$

B. $\dfrac{216}{625}$                    E. $\dfrac{612}{625}$ C. $\dfrac{228}{625}$

Misalkan kejadian sukses $S$ dalam kasus ini adalah kejadian ketika penjaga gawang berhasil menahan bola, sedangkan kejadian gagal $Yard$ adalah kejadian ketika penjaga gawang tidak dapat menahan bola (mengakibatkan gol). Diketahui bahwa $P(S) = \alpha = \dfrac35$.

Peluang penjaga gawang mampu menahan $3$ kali tendangan $(x=iii)$ dari $5$ kali tendangan $(n=5)$ adalah

$\begin{aligned} P(X = x) & = \displaystyle \binom{n}{ten} \alpha^x(1-\alpha)^{n-ten} \\ P(X = 3) & = \displaystyle \binom{five}{3} \left(\dfrac35\correct)^three\left(\dfrac25\right)^{5-3} \\ & = \dfrac{v!}{3! \cdot 2!} \times \dfrac{27}{125}\times \dfrac{iv}{25}\ \\ & = \boxed{\dfrac{216}{625}} \terminate{aligned}$



(Jawaban B)

Soal Nomor 29

Peluang mendapatkan satu kali jumlah angka $7$ dalam tiga kali pelemparan dua buah dadu adalah $\cdots$

A. $\dfrac{5}{246}$                          D. $\dfrac{25}{72}$

B. $\dfrac{5}{36}$                            E. $\dfrac{135}{432}$

C. $\dfrac{25}{46}$

Himpunan pasangan berurut mata dadu yang muncul agar jumlah mata dadunya $7$ adalah

$\{(1, 6), (half-dozen, ane), (two, five),$ $(v, 2), (3, 4), (4, 3)\}$

(sebanyak $half dozen$ kemungkinan)

Banyak semua anggota ruang sampel adalah $half-dozen \times half-dozen = 36.$

Kasus ini tergolong kasus distribusi binomial karena hanya ada $ii$ kemungkinan kejadian, yakni kejadian munculnya mata dadu berjumlah $7$ dan kejadian tidak munculnya mata dadu berjumlah $vii$.

Kita misalkan kejadian sukses $S$ adalah kejadian ketika muncul jumlah mata dadu $7$ dengan peluangnya

$P(S) = \alpha = \dfrac{6}{36} = \dfrac16.$

Peluang mendapatkan satu kali $(x = 1)$ mata dadu berjumlah $7$ dari $3$ kali $(n=3)$ pelemparan adalah

$\begin{aligned} P(X = x) & = \displaystyle \binom{n}{ten} \alpha^x(1-\alpha)^{n-x} \\ P(X = 1) & = \displaystyle \binom{3}{1} \left(\dfrac16\correct)^1\left(\dfrac56\right)^{3-i} \\ & = \dfrac{iii!}{1! \cdot 2!} \times \dfrac{1}{6} \times \dfrac{25}{36}\ \\ & = \abolish{3} \times \dfrac{1}{\cancelto{2}{6}} \times \dfrac{25}{36}\ \\ & = \boxed{\dfrac{25}{72}} \end{aligned}$



(Jawaban D)

Soal Nomor 30

Probabilitas seorang bayi belum diimunisasi rubela adalah $0,two$. Pada suatu hari, terdapat $4$ bayi di suatu puskesmas. Peluang terdapat $iii$ bayi yang belum diimunisasi rubela dari $5$ bayi tersebut adalah $\cdots$

A. $0,0128$                      D. $0,1240$

B. $0,0256$                      E. $0,2480$

C. $0,0512$

Kasus ini termasuk kasus distribusi binomial. Dua kemungkinan yang terjadi adalah bayi belum diimunisasi rubela atau sudah diimunisasi rubela.

Misalkan kejadian sukses $Due south$, adalah kejadian bayi belum diimunisasi rubela, sehingga peluangnya adalah $P(S) = \alpha = 0,2$. Peluang $3$ $(x=3)$ dari $four$ $(n=four)$ bayi belum diimunisasi rubela adalah

$$\begin{aligned} P(Ten =x) & =\displaystyle \binom{n}{ten} \blastoff^x(ane-\alpha)^{n-ten} \\ P(Ten = 3) & = \displaystyle \binom{4}{three} (0,ii)^3(1-0,ii)^{iv-iii} \\ & = \dfrac{four!}{3! \cdot i!} \times 0,008 \times 0,eight \\ & = 4 \times 0,008 \times 0,eight \\ & = \boxed{0,0256} \stop{aligned}$$(Jawaban B)

Soal Nomor 31

Suatu survei menemukan bahwa $1$ dari $five$ orang berkata bahwa dia telah mengunjungi dokter dalam sembarang bulan yang ditanyakan. Jika $10$ orang dipilih secara acak, peluang tiga di antaranya sudah mengunjungi dokter bulan lalu adalah $\cdots$

A. $0,108$                     D. $0,289$

B. $0,201$                     Due east. $0,301$

C. $0,245$

Kasus ini tergolong kasus distribusi binomial. Dua kejadian yang mungkin terjadi adalah orang yang dipilih sudah mengunjungi dokter atau belum.

Misalkan kejadian $A$ adalah kejadian orang yang dipilih sudah mengunjungi dokter, sehingga $P(A) = \alpha = \dfrac15$.

Peluang tiga $(10 = iii)$ di antara $ten (n = 10)$ sudah mengunjungi dokter bulan lalu adalah

$\begin{aligned} P(X =x) & =\displaystyle \binom{n}{x} \alpha^x(1-\blastoff)^{due north-x} \\ P(Ten = 3) & = \displaystyle \binom{10}{3} \left(\dfrac15\right)^3\left(1-\dfrac15\correct)^{10-three} \\ & = \dfrac{10!}{3! \cdot vii!} \times \dfrac{1^3}{5^3} \times \dfrac{4^seven}{5^seven} \\ & = 120 \times \dfrac{1}{125} \times \dfrac{16.384}{78.125} \\ & = \boxed{0,201} \end{aligned}$



(Jawaban B)





Baca Juga:

Soal dan Pembahasan – Peluang dan Kombinatorika (Tingkat SMA)







Bagian Uraian

Soal Nomor 1

Tentukan peluang munculnya $6$ gambar pada pelemparan koin homogen (setimbang) sebanyak $x$ kali.

Kasus ini mengarah pada percobaan binomial karena peristiwa pelemparan koin hanya memunculkan $two$ kejadian, yaitu munculnya angka dan munculnya gambar, masing-masing dengan peluang yang sama, yaitu $\dfrac12$. Diketahui bahwa:

$\boxed{\begin{aligned} n & = 10 \\ x & = half dozen \\ \alpha & = \dfrac12 \stop{aligned}}$

Dengan demikian,

$\begin{aligned} P(10 = x) & = \displaystyle \binom{northward}{x} \alpha^x(1-\blastoff)^{n-x} \\ P(X = 6) & = \displaystyle \binom{ten}{6} \left(\dfrac12\correct)^half-dozen\left(\dfrac12\right)^{10-vi} \\ & = \dfrac{10!}{half-dozen! \cdot 4!} \left(\dfrac12\right)^{10} \\ & = 210 \cdot \dfrac{1}{1024} = 0,205 \cease{aligned}$

Jadi, peluang munculnya $6$ gambar pada pelemparan koin homogen (setimbang) sebanyak $10$ kali adalah $\boxed{0,205}$

Today Quote

Mengasihi tanpa mengasihani, menggenggam tanpa mencengkeram, menuntun tanpa menuntut; mari sama-sama belajar menghargai tanpa menghakimi.

Variabel Acak X Menyatakan Banyaknya Angka Pada Pelemparan Empat Keping

Sumber: https://pedidikanindonesia.com/data-yang-melibatkan-variabel-kontinu-adalah/

Check Also

Harga Beras 10 Kg Di Pasar

Harga Beras 10 Kg Di Pasar 4 menit Kamu pasti sudah sering sekali mendengar ungkapan, …