Rumus Turunan Pembagian.
Rumusrumus.com
kali ini akan membahas tentang materi pengertian turunan trigonometri yang meliputi rumus turunan beserta contoh soal turunan trigonometri dan pembahasannya lengkap.
Daftar Isi:
Pengertian Turunan Trigonometri
Turunan fungsi trigonometri yaitu
proses matematis untuk menemukan turunan pada suatu fungsi trigonometri ataupun tingkat perubahan terkait dengan suatu variabelnya. Fungsi trigonometri yang biasa digunakan yaitu
sin(ten),
cos(x) dan
tan(x). Contoh: turunan “f(ten) = sin(ten)” ditulis “f ′(a) =
cos(a)”. “f ′(a)” yaitu tingkat perubahan sin(10) di titik “a”.

Semua turunan fungsi trigonometri lingkaran bisa ditemui dengan cara memakai turunan sin(10) dan cos(x). hasil-bagi lalu dpakai untuk menemukan turunannya. Sementara itu, pencarian turunan fungsi trigonometri invers membutuhkan diferensiasi implisit dan turunan fungsi trigonometri biasa.
Rumus Turunan Fungsi Trigonometri
Berikut ialah beberapa turunan dasar trigonometri yang hatus diketahui sebelum memecahkan persoalan turunan trigonometri:
f (10) = sin x → f ‘(10) = cos ten
f (x) = cos x → f ‘(x) = −sin ten
f (10) = tan x → f ‘(x) = sec2 x
f (x) = cot x → f ‘(10) = −csc2x
f (ten) = sec x → f ‘(x) = sec x . tan x
f (x) = csc ten → f ‘(x) = −csc x . cot x.
Perluasan Rumus Turunan Fungsi Trigonometri I
Misalkan u merupakan fungsi yang bisa diturunkan terhadap x, dimana u’ yaitu turunan u terhadap 10, Jadi :
f (x) = sin u → f ‘(x) = cos u . u’
f (10) = cos u → f ‘(10) = −sin u . u’
f (ten) = tan u → f ‘(10) = sec2u . u’
f (ten) = cot u → f ‘(x) = −csc2 u . u’
f (x) = sec u → f ‘(x) = sec u tan u . u’
f (x) = csc u → f ‘(x) = −csc u cot u . u’.
Perluasan Rumus Turunan Fungsi Trigonometri II
Berikut ialah turunan dari fungsi rumus sin cos tan trigonometri pada variabel sudut ax +b, dimana a dan b yaitu bilangan real dengan a≠0 :
f (x) = sin (ax + b) → f ‘(x) = a cos (ax + b)
f (x) = cos (ax + b) → f ‘(ten) = -a sin (ax + b)
f (10) = tan (ax + b) → f ‘(x) = a sec2 (ax +b)
f (x) = cot (ax + b) → f ‘(ten) = -a csc2 (ax+b)
f (x) = sec (ax + b) → f ‘(ten) = a tan (ax + b) . sec (ax + b)
f (10) = csc (ax + b) → f ‘(10) = -a cot (ax + b) . csc (ax + b).
Fungsi Turunan

Contoh Soal Turunan Trigonometri
Contoh Soal 1
Tentukan turunan y = cos x2
Jawab
Misal :
u = x2 ⇒ u’ = 2x
y’ = −sin u . u’
y’ = −sin x2 . 2x
y’ = −2x sin x2
Contoh Soal ii
Tentukan turunan y = sin 4x !
Jawab
Misal :
u = 4x ⇒ u’ = iv
y’ = cos u . u’
y’ = cos 4x . 4
y’ = 4cos 4x
Contoh Soal 3
Tentukan turunan y = sec one/2x
Jawab
Misal :
u = 12x ⇒ u’ = 12
y’ = sec u tan u . u’
y’ = sec one/2x tan 1/2x . 1/2
y’ = 1/2sec i/2x tan 1/2x
Contoh Soal four
Tentukan turunan y = tan (2x+1)
Jawab
Misal :
u = 2x + 1 ⇒ u’ = two
y’ = sec2u . u’
y’ = sec2(2x+one) . 2
y’ = 2sec2(2x+one)
Contoh Soal 5
Tentukan turunan y = sin7(4x−3)
Jawab
y = [sin (4x−3)]7
Misal :
u(10) = sin (4x−3) ⇒ u'(x) = iv cos (4x−three)
n = 7
y’ = n [u(x)]n-1. u'(10)
y’ = 7 [sin (4x−3)]vii-i . four cos (4x−3)
y’ = 28 sin6 (4x−three) cos (4x−three)
Demikianlah penjelasan tentang turunan trigonometri dari
Rumusrumus.com, Semoga bermanfaat
Artikel Lainya :
- Contoh Soal Induksi Matematika
- Contoh Soal Mikrometer Sekrup
Rumus Turunan Pembagian
Source: https://rumusrumus.com/turunan-trigonometri/