Menentukan Garis Singgung Persekutuan Luar Dua Lingkaran

Menentukan Garis Singgung Persekutuan Luar Dua Lingkaran

Misal diberikan dua lingkaran yang berpusat di

dan
N
yang berturut-turut memiliki jari-jari
R
dan
r
serta jarak antar titik pusat kedua lingkarannya adalah
p
(perhatikan gambar di bawah ini).GSPL_01

Bagaimana cara menentukan panjang garis singgung kedua lingkaran tersebut?

Pertama dibuat garis yang menyinggung kedua lingkaran tersebut, misal sebut garis
AB
dengan titik
A
dan
B
menyinggung masing-masing lingkaran. Seperti yang diketahui bahwa garis yang menyinggung kedua lingkaran adalah tegak lurus dengan jari-jari lingkaran yang bersangkutan. Dalam hal ini, garis singgung yang seperti ini dikenal dengan nama
Garis Singgung Persekutuan Luar Dua Lingkaran.

Dalam menentukan panjang garis singgung persekutuan ini, akan dimanfaatkan
Pythagoras
sehingga kita harus membentuk segitiga siku-siku. Perhatikan garis singgung
AB, apabila garis
AB
digeser sedemikian hingga membentuk garis
ON
dan sejajar dengan garis
AB
dengan titik
B
berhimpit dengan titik pusat lingkaran yaitu titik
N, maka akan terbentuk segitiga
MNO
yang siku-siku di
O. Dari sini, berakibat panjang
AB = ON
dan panjang
AO=BN. Karena panjang
AO=BN=r, didapat panjang
MO = R-r
(perhatikan gambar di bawah ini).GSPL_02

Selanjutnya dengan menggunakan
Pythagoras, diperoleh


NO = \sqrt{MN^2-MO^2}


d = \sqrt{p^2-(R-r)^2}

dengan
p
adalah jarak pusat kedua lingkaran.


Contoh 1.

Diketahui dua buah lingkaran dengan pusat M dan N, dengan panjang jari-jari berturut-turut adalah 10 cm dan 25 cm. Jika jarak titik M dan N adalah 17 cm, maka panjang garis singgung persekutuan luar kedua lingkaran tersebut adalah …

Diketahui : R = 25 cm, r = 10 cm dan p = 17 cm


d = \sqrt{p^2-(R-r)^2}


= \sqrt{17^2-(25-10)^2}


= \sqrt{17^2-15^2}


= \sqrt{289-125}


= \sqrt{64} = 8

Jadi, panjang garis singgung persekutuan luar kedua lingkaran tersebut adalah 8 cm.


Contoh 2.

Misal diberikan dua lingkaran dengan A dan B adalah titik pusatnya serta berturut-turut panjang jari-jari masing-masing lingkaran adalah 4 cm dan 9 cm. Apabila kedua lingkaran tersebut berhimpit, berapakah panjang garis singgung persekutuan luar lingkaran tersebut?

Baca :   Apakah Yang Membedakan Musik Daerah Dengan Musik Nusantara

Diketahui : R = 9 cm dan r = 4 cm. Karena kedua lingkaran tersebut berhimpit, artinya jarak kedua titik pusat lingkaran adalah R + r = 13 cm


d = \sqrt{p^2-(R-r)^2}


= \sqrt{13^2-(9-4)^2}


= \sqrt{13^2-5^2}


= \sqrt{169-25}


= \sqrt{144} = 12

Jadi, panjang garis singgung persekutuan luar kedua lingkaran tersebut adalah 12 cm.


Contoh 3.

Panjang garis singgung persekutuan luar dua lingkaran adalah 12 cm. Jarak kedua pusat lingkaran adalah 13 cm. Jika panjang salah satu jari-jari lingkaran adalah 3 cm. Hitunglah panjang jari-jari lingkaran yang lain!

Diketahui : d = 12 cm, p = 13 cm dan r = 3 cm

Ditanya : R = …


d^2 = p^2-(R-r)^2


12^2 = 13^2-(R-3)^2


144 = 169-(R-3)^2


(R-3)^2 = 169-144 = 25


R-3 = 5


R = 8

Jadi, panjang jari-jari lingkaran yang lainnya adalah 8 cm.


Contoh 4.

Diberikan dua buah roda yang berjari-jari 21 cm. Kedua roda tersebut diletakkan sedemikian hingga kedua roda tersebut bersinggungan. Jika kedua roda tersebut diikat dengan tali, berapa panjang minimal tali yang dibutuhkan ?

Perhatikan gambar di bawah ini.GSPL_05

Dari gambar di atas, didapat bahwa panjang garis singgung persekutuan luar yaitu AB dan CD adalah 2 kali jari-jari, di mana kedua garis persekutuan luar lingkaran tersebut adalah sama. Sehingga diperoleh AB = CD = 42 cm. Perhatikan bahwa garis BC dan AD membagi dua lingkaran, sehingga diperoleh


BC = \dfrac{180^0}{360^0} (2 \pi r)


= \dfrac{1}{2} \cdot 2 \cdot \dfrac{22}{7} \cdot 21


= 22 \cdot 3 = 66

Panjang minimal tali yang dibutuhkan untuk mengikat roda adalah


= AB + CD + BC + DA


= 42 + 42 + 66 + 66


= 216


Contoh 5.

Pak Edi membeli tiga buah pipa berbentuk lingkaran yang berjari-jari. Apabila Pak Edi ingin mengikat ketiga pipa tersebut jadi satu (perhatikan gambar), berapa panjang minimal tali untuk mengikat ketiga pipa tersebut?GSPL_03

Dalam menyelesaikan soal ini, kita akan memanfaatkan garis singgung persekutuan luar. Perhatikan gambar di bawah ini.GSPL_04

Dari gambar di atas, didapat bahwa panjang garis singgung persekutuan luar yaitu AB, CD dan EF adalah 2 kali jari-jari, di mana ketiga garis persekutuan luar lingkaran tersebut adalah sama. Sehingga diperoleh AB = CD = EF = 14 cm. Berakibat segitiga PQR adalah segitiga sama sisi. Perhatikan lingkaran dengan titik pusat Q.

Baca :   Suatu Larutan Dapat Menghantarkan Arus Listrik Apabila Mengandung


\angle BQC = 360^0-(\angle PQB + \angle CQR + \angle PQR)


= 360^0-(90^0 + 90^0 + 60^0)


= 360^0-240^0


= 120^0

Dengan cara yang sama, diperoleh
\angle APF = \angle DRE. Selanjutnya, berakibat panjang busur BC = panjang busur AF = panjang busur DE, yaitu


BC = \dfrac{120^0}{360^0} (2 \pi r)


= \dfrac{1}{3} \cdot 2 \cdot \dfrac{22}{7} 7


= \dfrac{44}{3}

Panjang minimal tali yang dibutuhkan untuk mengikat pipa adalah


= AB + CD + EF + BC + DE + AF


= 3d + 3 \times (\text{panjang busur})


= 3(14) + 3\left(\dfrac{44}{3} \right)


= 42 + 44


= 86

Menentukan Garis Singgung Persekutuan Luar Dua Lingkaran

Sumber: https://aimprof08.wordpress.com/2016/03/28/garis-singgung-persekutuan-luar-dua-lingkaran/

Check Also

Contoh Soal Perkalian Vektor

Contoh Soal Perkalian Vektor. Web log Koma – Setelah mempelajari beberapa operasi hitung pada vektor …