Hasil Dari Perkalian Matriks

Hasil Dari Perkalian Matriks.

Hai sobat belajar Gramedia, jika kalian merasa kesulitan ketika belajar matematika ada baiknya kalian bisa mengikuti les privat, sehingga bisa lebih meningkatkan nilai prestasi belajar kalian di sekolah. Pembahasan kali ini admin akan menjelaskan materi tentang perkalian matrik.

Meski banyak siswa menganggap materi ini cukup sulit, tetapi jangan berhenti untuk terus belajar. Jika mau mempelajari dengan sungguh-sungguh, perkalian matriks bisa dikuasai dengan baik dan soal-soalnya bisa dikerjakan dengan mudah. Pembahasan kali ini akan dimulai dengan uraian mengenai pengertian perkalian matriks.

Perkalian matriks adalah salah satu pembelajaran dalam ilmu matematika. Matriks itu sendiri adalah sebuah kumpulan bilangan yang susunannya terdiri dari baris atau kolom. Selain itu, bisa juga dengan susunan keduanya. Kumpulan bilangan ini diapit dalam tanda kurung.

Matriks ini digunakan ketika ingin menyederhanakan penyampaian data. Dengan adanya matriks, maka akan lebih mudah dalam tahap pengolahan selanjutnya. Mengenai jenisnya, matriks terbagi atas rumus matematika matriks baris, rumus menghitung matriks kolom, rumus mencari matriks nol, matriks diagonal, matriks segitiga bawah, matriks skalar, matriks persegi, rumus matriks matematika segitiga alas, dan matriks identitas.

Untuk lebih mengenal perkalian bilangan matriks, alangkah baiknya kalian simak ulasan lengkapnya di bawah ini hingga selesai.

Pengertian Perkalian Matriks



Agar perkalian matriks dapat dilakukan, matriks A perlu memiliki jumlah kolom yang sama dengan jumlah baris pada matriks B. Hasil perkalian keduanya adalah matriks dengan jumlah baris yang sama dengan matriks A dan jumlah kolom yang sama dengan matriks B.

Tak hanya penjumlahan dan pengurangan, ternyata di dalam matriks juga ada perkalian matriks. Matriks ini bisa dikalikan dengan bilangan bulat maupun matriks lainnya. Perkalian di dalam matriks memiliki syarat masing-masing.

Perkalian matriks adalah nilai pada matriks yang bisa dihasilkan dengan cara dikalikan-nya tiap baris dengan setiap kolom yang memiliki jumlah baris yang sama. Setiap anggota matriks ini nantinya akan dikalikan dengan anggota elemen matriks lainnya.

Perkalian matriks ini dilakukan sesuai urutan dan aturan yang berlaku pada perkalian bilangan matriks. Saat sedang menghitung nilai suatu matriks, berarti akan melihat adanya kolom dan juga baris. Kolom dan baris digunakan untuk menentukan maupun menghitung nilai matriks. Pada dasarnya kolom dan baris sangat diperlukan dalam penghitungan matriks.

Dalam matematika, perkalian matriks adalah suatu operasi biner dari dua matriks yang menghasilkan sebuah matriks. Agar dua matriks dapat dikalikan, banyaknya kolom pada matriks pertama harus sama dengan banyaknya baris pada matriks kedua. Matriks hasil perkalian keduanya, akan memiliki baris sebanyak baris matriks pertama, dan kolom sebanyak kolom matriks kedua. Perkalian matriks
A
dan
B
dinyatakan sebagai
AB.

Perkalian matriks didefinisikan pertama kali oleh matematikawan Prancis Jacques Philippe Marie Binet pada tahun 1812. Definisi ini digunakannya untuk merepresentasikan komposisi dari pemetaan-pemetaan linear yang dinyatakan dalam bentuk matriks. Perkalian matriks selanjutnya menjadi konsep dasar dalam aljabar linear, dan memiliki banyak penerapan di berbagai bidang matematika, matematika terapan, statistika, fisika, ekonomi, dan teknik. Menghitung hasil perkalian matriks adalah operasi yang penting dalam semua penerapan komputasi dari bidang aljabar linear.

Baca :   Contoh Soal Persamaan Garis Singgung Lingkaran Yang Diketahui Gradiennya


1. Notasi

Artikel ini akan menggunakan konvensi penulisan berikut: matriks dinyatakan oleh huruf kapital dengan cetak tebal, contohnya
A; vektor dinyatakan oleh huruf kecil dengan cetak tebal, contohnya
a; dan entri-entri (elemen) dari vektor dan matriks akan dinyatakan dalam huruf miring (karena mereka anggota dari suatu lapangan), contohnya

A

dan

a.

Notasi indeks sering digunakan untuk menyatakan suatu definisi, dan dipakai sebagai format baku dalam literatur-literatur. Entri ke-
i
,

j

dari matriks
A
umumnya dinyatakan sebagai (A)
ij
,

A

ij, atau

a

ij; sedangkan label yang menyatakan bahwa matriks merupakan sebuah elemen dari suatu koleksi dari matriks umumnya hanya ditulis sebagai
A
one,
A
two, dan lain-lain.

2. Definisi

Jika


adalah matriks berukuran



thousand × n


dan


adalah matriks berukuran

, dengan elemen-elemen sebagai berikut.

Hasil perkalian kedua matriks tersebut,



(dinyatakan tanpa menggunakan tanda kali atau titik), adalah sebuah matriks berukuran
.

dengan setiap entri pada matriks


didefinisikan sebagai

untuk nilai



i

= i, … ,
m

dan nilai


. Dengan kata lain, entri



adalah hasil yang didapatkan dengan mengalikan secara berpasang-pasangan entri di baris ke-


matriks



dengan entri di kolom ke-


matriks


, lalu menjumlahkan semua hasil perkalian ini. Intepretasi lain dari proses ini, entri


adalah hasil perkalian titik baris ke-


matriks



dengan kolom ke-


matriks


. Dengan demikian,



juga dapat ditulis sebagai berikut.

Hal ini menyebabkan hasil perkalian



hanya terdefinisi jika dan hanya jika banyaknya kolom di



sama dengan banyaknya baris di


,
yang dalam kasus ini sebanyak


.

Dalam sebagian besar kasus, entri dari matriks akan berupa bilangan. Namun, entri dari matriks dapat berupa sembarang objek matematika, asal memiliki sifat penjumlahan dan perkalian. Sifat ini mengartikan objek matematika tersebut haruslah asosiatif, penjumlahannya komutatif, dan perkaliannya distributif terhadap penjumlahan. Sebagai contoh, entri dari matriks dapat berupa matriks, lihat artikel tentang matriks blok.


three. Ilustrasi

Matrix multiplication diagram 2.svg

Gambar berikut memberikan diagram hasil perkalian dari dua matriks


dan

, menunjukkan bagaimana setiap perpotongan di matriks hasil perkalian berkorespodensi dengan sebuah baris di


dan sebuah kolom di

.

Nilai pada matriks hasil perkalian, yang ditandai dengan simbol lingkaran, adalah:


Penggunaan yang Fundamental

Secara historis, perkalian matriks diperkenalkan untuk membantu dan memperjelas perhitungan-perhitungan dalam aljabar linear.


one. Pemetaan Linear

Jika suatu ruang vektor memiliki basis yang terbatas, semua vektornya dapat dinyatakan secara unik oleh sebuah barisan skalar yang terhingga. Barisan ini dinamakan vektor koordinat, dengan entri-entrinya adalah koordinat dari vektor terhadap vektor-vektor basis.

Vektor-vektor koordinat juga membentuk suatu ruang vektor lain, yang isomorfik dengan ruang vektor asalnya. Vektor koordinat umumnya disusun sebagai matriks kolom (juga disebut dengan
vektor kolom), yakni sebuah matriks yang berisi satu kolom. Jadi, sebuah vektor kolom menyatakan suatu vektor koordinat, sekaligus vektor di ruang vektor asalnya.

Sebuah peta linear



dari suatu ruang vektor berdimensi



ke suatu ruang vektor berdimensi


, akan memetakan suatu vektor kolom

Menjadi vektor kolom



Dengan demikian, peta linear



dapat didefinisikan oleh sebuah matriks



dan pemetaan vektor kolom



dapat dinyatakan sebagai perkalian matriks





Misalkan


adalah suatu peta linear yang lain, yang memetakan ruang vektor berdimensi


ke suatu ruang vektor berdimensi

. Peta linear


dapat direpresentasikan sebagai sebuah matriks


berukuran


. Dengan menjabarkan perhitungan, dapat ditunjukkan matriks yang dihasilkan komposisi pemetaan


adalah matriks hasil perkalian



ii. Sistem Persamaan Linear

Bentuk umum dari sebuah sistem persamaan linear adalah



Dengan menggunakan notasi yang dijelaskan di atas, sistem tersebut setara dengan persamaan matriks




Sifat-Sifat Umum Perkalian Matriks


Perkalian matriks memiliki berapa sifat yang sama dengan perkalian pada umumnya. Namun, perkalian matriks tidak terdefinisi jika jumlah kolom pada faktor yang pertama berbeda dengan jumlah baris pada faktor yang kedua. Perkalian matriks juga tidak komutatif, bahkan jika hasil perkalian tetap terdefinisi setelah urutan perkalian ditukar.

Baca :   Jarak Yang Ditempuh Cahaya Dalam 1 Tahun


one. Tidak Komutatif

Suatu operasi dikatakan komutatif jika, untuk sebarang dua elemen



dan


dengan hasil perkalian



yang terdefinisi, maka hasil perkalian


juga terdefinisi dan memenuhi hubungan


Jika


dan


masing-masing adalah matriks berukuran


dan

, maka



terdefinisi ketika

, dan


terdefinisi ketika


.

Jadi, secara umum jika salah satu hasil perkalian terdefinisi, hasil perkalian yang lain (dengan urutan yang ditukar) tidak terdefinisi. Pada kasus


, maka kedua perkalian terdefinisi, tapi menghasilkan matriks dengan ukuran yang berbeda; sehingga tidak mungkin sama. Hanya pada kasus

, yakni ketika


dan


adalah matriks persegi dengan ukuran yang sama, kedua perkalian terdefinisi dan juga memiliki ukuran yang sama. Namun bahkan untuk kasus ini, secara umum berlaku

Sebagai contoh

tapi

Satu kasus khusus, sifat komutatif terjadi ketika


dan


adalah matriks persegi diagonal yang berukuran sama; maka


.


2. Sifat Distributif

Perkalian matriks bersifat distributif terhadap penjumlahan matriks. Misalkan

,

,


, dan


masing-masing adalah matriks berukuran

,


,

, dan

. Sifat distributif mengartikan matriks memiliki sifat distributif (kiri)

dan sifat distributif (kanan)

Sifat distributif ini dapat dituliskan dalam bentuk entri pada matriks, sebagai


iii. Perkalian dengan Skalar

Jika



adalah sebuah matriks dan



adalah sebuah skalar, maka matriks


dan


dihasilkan dengan mengalikan (dari kiri atau dari kanan) semua entri di


dengan


. Ketika skalar


bersifat komutatif, didapatkan hubungan

Pada kasus hasil perkalian



terdefinisi (dengan kata lain, banyaknya kolom di



sama dengan banyaknya baris di

), akan berlaku




dan


Jika skalar bersifat komutatif, keempat matriks tersebut sama. Sifat ini muncul dari ke-bilinear-an (bilinearity) hasil kali skalar:




iv. Transpos

Jika entri pada matriks bersifat komutatif, maka transpos dari hasil perkalian matriks-matriks adalah hasil perkalian dengan urutan yang dibalik, dari transpos dari matriks-matriks tersebut. Secara simbolis ini dinyatakan sebagai



dengan
T
menyatakan operasi transpos, yakni operasi yang mengubah kolom matriks menjadi baris dan sebaliknya. Hal ini tidak berlaku bagi matriks dengan entri yang tidak komutatif; karena entri-entri yang dihasilkan dari perkalian akan berubah ketika urutan perkalian dibalik.


5. Sifat Asosiatif

Untuk sebarang matriks


,


, dan

, hasil perkalian



dan



terdefinisi jika dan hanya banyaknya kolom di



sama dengan banyaknya baris di


, dan banyaknya kolom di


sama dengan banyaknya baris di

. Jika salah satu hasil perkalian tersebut terdefinisi, hasil perkalian yang lain juga terdefinisi. Dalam kasus ini, matriks memiliki sifat asosiatif.

Seperti sembarang operasi asosiatif lainnya, penggunaan tanda kurung tidak diperlukan, sehingga cukup menulis hasil perkalian tersebut sebagai



Sifat ini dapat diperumum ke perkalian yang melibatkan banyak matriks, asal dimensi mereka memungkinkan perkalian terjadi. Dengan kata lain, jika


adalah matriks-matriks, dengan banyaknya kolom



sama dengan banyak baris



untuk


, maka hasil perkalian

terdefinisi dan hasilnya tidak bergantung pada urutan perkalian yang dilakukan, selama urutan dari matriks-matriks tidak berubah.

Sifat ini dapat dibuktikan secara langsung tapi rumit dengan melakukan manipulasi penjumlahan. Sifat ini juga merupakan hasil dari fakta matriks menyatakan pemetaan linear. Dengan demikian, sifat asosiatif matriks adalah kasus spesifik dari sifat asosiatif komposisi fungsi.


6. Kompleksitas Tidak Asosiatif

Walaupun hasil perkalian matriks tidak bergantung pada urutan operasi yang dilakukan (selama urutan matriks-matriks tidak diubah), kompleksitas komputasi perkalian dapat sangat bergantung pada urutan operasi. Sebagai contoh, misalkan


,

, dan


masing-masing merupakan matriks berukuran

,

, dan

. Menghitung


memerlukan



operasi perkalian; sedangkan menghitung


memerlukan


perkalian.

Algoritma-algoritma telah dikembangkan untuk mencari urutan perkalian yang terbaik. Ketika banyaknya matriks yang perlu dikali,

, meningkat, dapat ditunjukkan pemilihan urutan perkalian yang terbaik memiliki kompleksitas



Detail

Perkalian matriks adalah suatu operasi biner yang menghasilkan suatu matriks dari dua matriks dengan entri dalam suatu medan, atau secara lebih umum dalam suatu gelanggang atau bahkan suatu semigelanggang. Produk matriks dirancang untuk menampilkan komposisi peta linear yang diwakili oleh matriks-matriks.

Baca :   Pada Populasi Yang Berada Dalam Kesetimbangan Hardy Weinberg 36

Oleh sebab itu, pengalian matriks merupakan operasi paling mendasar dalam bidang aljabar linier, dan karena itu banyaknya penerapannya di bidang matematika. Pengalian matriks juga merupakan operasi yang penting dalam matematika terapan, fisika, dan teknik.

Secara lebih rinci, jika
A
adalah suatu matriks
n × m
dan
B
adalah suatu matriks
m × p,
hasil pengalian matriks
AB
adalah suatu matriks
due north × p, dimana entri m di sepanjang baris
A
dikalikan dengan entri yard di sepanjang kolom
B
dan dijumlahkan untuk menghasilkan suatu entri dari
AB. Apabila dua peta linear diwakili oleh matriks-matriks, maka pengalian matriks mewakili komposisi dua peta.

Definisi produk matriks membutuhkan adanya entri-entri dari suatu semigelanggang, dan tidak membutuhkan pengalian unsur-unsur semigelanggang agar komutatif. Dalam banyak penerapan, unsur-unsur matriks menjadi bagian suatu medan, meskipun semigelanggang tropikal juga merupakan suatu pilihan umum untuk masalah jarak terpendek, bahkan dalam kasus matriks-matriks atas medan-medan, hasil pengaliannya pada umumnya tidak komutatif, meskipun dalam penjumlahan matriks bersifat asosiatif dan distributif.

Matriks-matriks identitas (yaitu matriks persegi dimana entri-entrinya bernilai nol di luar diagonal utama dan ane pada diagonal utama) adalah unsur-unsur identitas dari pengalian matriks. Oleh karena itu, matriks
north x n
pada suatu gelanggang membentuk suatu gelanggang, yang tidak komutatif kecuali jika n=1 dan gelanggang dasarnya komutatif.



Contoh Soal Perkalian Matriks

Berikut adalah beberapa soal perkalian bilangan matriks lengkap dengan pembahasan selengkapnya untuk kalian.


Soal one

Tentukan hasil perkalian matriks bilangan A dan B di bawah ini.

\[ A = \begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix} \]





\[ B = \begin{pmatrix} 7 & 5 \\ 6 & 4 \end{pmatrix} \]

Pembahasan:

\[ A \times B = \begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix} \times \begin{pmatrix} 7 & 5 \\ 6 & 4 \end{pmatrix} \]

\[ = \begin{pmatrix} 3 \cdot 7 + 4 \cdot 6 & 3 \cdot 5 + 4 \cdot 4 \\ 1 \cdot 7 + 2 \cdot 6 & 1 \cdot 5 + 2 \cdot 4 \end{pmatrix} \]

\[ = \begin{pmatrix} 21 + 24 & 15 + 16 \\ 7 + 12 & 5 + 8 \end{pmatrix} \]

\[ = \begin{pmatrix} 45 & 31 \\ 19 & 13 \end{pmatrix} \]

Perkalian dua buah matriks dengan masing-masing mempunyai ukuran 2 x ii di atas bisa menghasilkan matriks dengan ukuran 2 x ii pula. Proses perkalian bilangan dua matriks ini tak begitu rumit. Hal ini dikarenakan tiap anggota penyusun matriks dengan ukuran 2 ten 2 hanya ada iv anggota untuk tiap matriks. Dengan begitu, perkaliannya bisa dengan mudah dilakukan.


Soal 2

Tentukan hasil perkalian bilangan matriks 3 ten 3 berikut ini.

\[ A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \]





\[ B = \begin{pmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \\ 3 & 2 & 1 \end{pmatrix} \]

Pembahasan:



\[ A \times B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \times \begin{pmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \\ 3 & 2 & 1 \end{pmatrix} \]

\[ = \begin{pmatrix} 1 \cdot 9 + 2 \cdot 6 + 3 \cdot 3 & 1 \cdot 8 + 2 \cdot 5 + 3 \cdot 2 & 1 \cdot 7 + 2 \cdot 4 + 3 \cdot 1 \\ 4 \cdot 9 + 5 \cdot 6 + 6 \cdot 3 & 4 \cdot 8 + 5 \cdot 5 + 6 \cdot 2 & 4 \cdot 7 + 5 \cdot 4 + 6 \cdot 1 \\ 7 \cdot 9 + 8 \cdot 6 + 9 \cdot 3 & 7 \cdot 8 + 8 \cdot 5 + 9 \cdot 2 & 7 \cdot 7 + 8 \cdot 4 + 9 \cdot 1 \end{pmatrix} \]

\[ = \begin{pmatrix} 9 + 12 + 9 & 8 + 10 + 6 & 7 + 8 + 3 \\ 36 + 30 + 18 & 32 + 25 + 12 & 28 + 20 + 6 \\ 63 + 48 + 27 & 56 + 40 + 18 & 49 + 32 + 9 \end{pmatrix} \]

\[ = \begin{pmatrix} 30 & 24 & 18 \\ 84 & 69 & 54 \\ 138 & 114 & 90 \end{pmatrix} \]

Perlu untuk kalian ketahui, perkalian matriks 3 x 3 sedikit lebih rumit jika anda bandingkan dengan perkalian matriks 2 x 2. Bukan tanpa alasan. Hal ini dikarenakan ukuran matriks dengan bilangan 3 10 3 memiliki jumlah anggota yang lebih banyak.

Matriks persegi yang mempunyai ukuran 3 ten 3 ada ix anggota, dimana terbagi dalam three baris serta iii kolom. Dalam matriks yang memiliki ukuran 3 10 3, tiap baris dan kolom ada three anggota. Konsep perkalian pada bilangan matriks dengan ukuran iii x 3 ini sama dengan proses perkalian matriks yang memiliki ukuran 2 x 2.

Hanya saja memang lebih rumit. Meski rumit, bukan berarti tidak bisa diselesaikan. Untuk itu, pastikan kalian mencoba mempelajarinya secara teliti.

Itulah uraian mengenai perkalian dua matriks dan contoh soalnya. Diharapkan setelah melihat materi di blog Gramedia yang membahas pelajaran matematika para siswa dan siswi menjadi lebih mudah memahami perkalian dua matriks. Tidak hanya memahaminya saja, tetapi juga bisa lebih mudah dalam mengerjakan soal-soal yang diberikan oleh guru di sekolah.

Rekomendasi Buku & Artikel Terkait

BACA JUGA:

  • Kenalan dengan Penemu Aljabar dan Algoritma
  • Memahami Sifat Asosiatif dalam Operasi Hitung Matematika
  • Mengenal Penemu Aljabar dan Cara Menghitung Aljabar
  • Pengertian Determinan: Cara Mencari, Manfaat, dan Contoh Soal
  • Pengertian Rasio dan Pemanfaatannya dalam Matematika dan Akuntansi

ePerpus adalah layanan perpustakaan digital masa kini yang mengusung konsep B2B. Kami hadir untuk memudahkan dalam mengelola perpustakaan digital Anda. Klien B2B Perpustakaan digital kami meliputi sekolah, universitas, korporat, sampai tempat ibadah.”

logo eperpus

  • Custom log
  • Akses ke ribuan buku dari penerbit berkualitas
  • Kemudahan dalam mengakses dan mengontrol perpustakaan Anda
  • Tersedia dalam platform Android dan IOS
  • Tersedia fitur admin dashboard untuk melihat laporan analisis
  • Laporan statistik lengkap
  • Aplikasi aman, praktis, dan efisien

Hasil Dari Perkalian Matriks

Source: https://www.gramedia.com/literasi/perkalian-matriks/

Check Also

Contoh Soal Perkalian Vektor

Contoh Soal Perkalian Vektor. Web log Koma – Setelah mempelajari beberapa operasi hitung pada vektor …