# Gambarlah Garis Yang Memiliki Persamaan Berikut

KlikBelajar.com – Gambarlah Garis Yang Memiliki Persamaan Berikut

Pembahasan<\/h2>

Untuk membuat garis lurus melalui persamaan, kita harus membuat dua titik koordinat<\/p>

<\/p>

• a) Persamaan garis 2x = 6y<\/strong><\/li><\/ul>

Jika x = 3,\u00a0\u21d2 \u00a0 \u00a02x = 6y<\/p>

\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0\u00a02 (3) = 6y<\/p>

\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a06 = 6y<\/p>

\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0\u00a0y = 6\/6<\/p>

\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0\u00a0y = 1 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0titik (3 , 1)\u00a0<\/p>

Jika y = 0, \u00a0\u21d2 2x = 6y<\/p>

\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0\u00a02x = 6 (0)<\/p>

\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0\u00a02x = 0<\/p>

\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0\u00a0x = 0\/2<\/p>

\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0\u00a0x = 0 \u00a0 \u00a0 \u00a0titik (0 , 0)\u00a0<\/p>

<\/p>

• b) \u00a0Persamaan garis\u00a03x – 4 = 4y<\/strong><\/li><\/ul>

Jika x = 0, \u00a0\u21d2 3x – 4 = 4y<\/p>

\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a03 (0) – 4 = 4y<\/p>

\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a00 – 4 = 4y<\/p>

\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0\u00a0y = -4 \/ 4<\/p>

\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0\u00a0y = -1 \u00a0 \u00a0 \u00a0titik (0 , -1)\u00a0<\/p>

Jika y = 2, \u00a0\u21d2 \u00a03x – 4 = 4y<\/p>

\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a03x – 4 = 4 (2)<\/p>

\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a03x – 4 = 8<\/p>

\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0\u00a03x = 8 + 4<\/p>

\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0\u00a03x = 12<\/p>

\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0\u00a0x = 12\/3<\/p>

\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0\u00a0x = 4 \u00a0 \u00a0 titik (4 , 2)<\/p>

<\/p>

• c) \u00a0Persamaan garis 4x\u00a0+\u00a02y\u00a0=\u00a06<\/strong><\/li><\/ul>

Jika x = 0,\u00a0\u21d2 4x\u00a0+\u00a02y\u00a0=\u00a06<\/p>

\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a04 (0) + 2y\u00a0= 6<\/p>

\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a02y = 6<\/p>

\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0\u00a0y = 6\/2<\/p>

\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0\u00a0y = 3 \u00a0 \u00a0 titik (0 , 3)\u00a0<\/p>

Jika y = 1, \u00a0\u21d2 4x\u00a0+\u00a02y\u00a0=\u00a06<\/p>

\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0\u00a04x + 2 (1) = 6<\/p>

\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0\u00a04x = 6 – 2<\/p>

\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0\u00a04x = 4\/4<\/p>

\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0\u00a0x = 1 \u00a0 \u00a0 \u00a0titik (1 , 1)\u00a0<\/p>

<\/p>

d) \u00a0Persamaan garis y\u00a0+\u00a03x\u00a0-\u00a04\u00a0=\u00a00<\/strong><\/p>

Jika x = 0,\u00a0\u21d2 y\u00a0+\u00a03x\u00a0-\u00a04\u00a0=\u00a00<\/p>

\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0\u00a0y + 3 (0) – 4 = 0<\/p>

\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0\u00a0y – 4 = 0<\/p>

\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0\u00a0y = 4 \u00a0 \u00a0 \u00a0titik (0 , 4)\u00a0<\/p>

Jika y = 1, \u00a0\u21d2 y\u00a0+\u00a03x\u00a0-\u00a04\u00a0=\u00a00<\/p>

\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0\u00a01 + 3x – 4 = 0<\/p>

\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a03x = 4 – 1<\/p>

\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a03x = 3<\/p>

\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0x = 3\/3<\/p>

\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0x = 1 \u00a0 \u00a0 \u00a0titik (1 , 1)\u00a0<\/p>

<\/p>

Untuk gambar persamaan garis lurus bisa dilihat pada lampiran.<\/p>

<\/p>

———————————————————-<\/p>

### Pertanyaan baru di Matematika

Bentuk melengkapi kuadrat sempurna dari persamaan 2×2 – 12x + 9 = 0 adalah …. A. (x – 3)2 = 13,5 B. (x – 3)2 = 4,5 C. (x + 3)2 = 14,5 D. (x + 3)2 = 3, …

5

102 Kimia SMA 1 RB 21. Menurut Aufbau, bilangan kuantum dari elektron terakhir suatu atom unsur dengan nomor 40 adalah ikut jalan nya​

berapa luas layang layang dengan diagonal 1 (d1) 24cm dan diagonal 2 (d2) 12cm​

KPK dari 4,9,16,6,11​

Titik titik yang berjarak 3 satuan terhadap sumbu-X adalah…Titik-titik yang berjarak 4 satuan terhadap sumbu-Y adalah…​

Amatilah gambar di bawah ini! disting 14 cm -H H 100 261 C. d. Keliling bangun tersebut adalah .. cm. [HOTS a. 114 b. 128 # 142 156​

nilai diskriminan dari 3x²-7x+2=0 dan -x²+15x-3=0?​

nilai diskriminan dari x²+4x-21=0 dan 2x²-8x-10=0?​

tolong dibantu jawab ya, beserta caranya juga. Terimakasih​

sederhanakan ×⁴×(×⁶:×³)​

### Gambarlah Garis Yang Memiliki Persamaan Berikut

Sumber: https://levitrares.com/host-https-brainly.co.id/tugas/12405824

## Contoh Soal Perkalian Vektor

Contoh Soal Perkalian Vektor. Web log Koma – Setelah mempelajari beberapa operasi hitung pada vektor …