Galvanotaksis

Galvanotaksis.

Electrotaxis, as well known as
galvanotaxis, is the directed motion of biological cells or organisms guided past an electric field or current.[one]
The directed motion of electrotaxis tin accept many forms, such every bit; growth, development, agile swimming, and passive migration.[2]
[three]
A wide variety of biological cells can naturally sense and follow DC electrical fields. Such electric fields ascend naturally in biological tissues during development and healing.[4]
[five]
These and other observations have led to research into how applied electric fields can impact wound healing.[6]
[7]
[eight]
An increase in wound healing rate is regularly observed and this is thought to exist due to the cell migration and other signaling pathways that are activated by the electrical field.[ix]
Boosted research has been conducted into how applied electrical fields impact cancer metastasis, morphogenesis, neuron guidance, motility of pathogenic bacteria, biofilm formation, and many other biological phenomena.[three]
[ten]
[eleven]
[12]

History

[edit]

In 1889, German physiologist Max Verworn practical a depression-level straight electric current to a mixture of bacterial species and observed that some moved toward the anode and others moved to the cathode.[xiii]
Only two years later on, in 1891, Belgian microscopist Eastward. Dineur made the commencement known report of vertebrate cells migrating directionally in a direct electric current, a phenomenon which he coined galvanotaxis.[fourteen]
Dineur used a zinc–copper cell to apply a constant current to the abdominal cavity of a frog via a pair of platinum electrodes. He found that inflammatory leukocytes aggregated at the negative electrode. Since these pioneering studies, a variety of different cell types and organisms accept been shown to respond to electrical fields.[xv]

Baca :   Tuliskan Nama Bangun Segi Banyak Berikut Sesuai Banyak Sisinya

Mechanism

[edit]

Understanding of the underlying mechanisms that cause electrotaxis to occur is express. The diversity of biological cells and environmental conditions make information technology probable that there are many unlike mechanisms that allow for cells to migrate due to electric fields. Some researchers have indicated that cells move passively without whatever specific sensing mechanisms practical to modify active motility.

Bacteria

[edit]

In a sufficiently strong electric field, small cells may move as uniformly charged particles[16]
or dipoles.[17]
Other research reports suggest that leaner cells might perceive local electric fields via chemotaxis.[18]
[xix]
[20]
This is washed by sensing redox molecules that have formed a gradient relative to the poised electric surface in the local environs.

Mammalian Cells

[edit]

The method of detection of a field in mammalian cells is under active investigation and might involve several mechanisms. For at present, it is thought that redistribution of membrane-spring sensors dragged by Coulombic forces and electro-osmosis at the membrane would cause the cell to polarize, then migrate.[21]

Run into also

[edit]

  • Bioelectricity
  • Electrofishing

References

[edit]


  1. ^


    Cortese, Barbara; Palamà, Ilaria; D’Amone, Stefania; Gigli, Giuseppe (2014). “Influence of electrotaxis on prison cell behaviour”.
    Integrative Biology.
    vi
    (ix): 817–830. doi:10.1039/c4ib00142g. PMID 25058796.



  2. ^


    Cortese, Barbara; Palamà, Ilaria Elena; D’Amone, Stefania; Gigli, Giuseppe (2014). “Influence of electrotaxis on prison cell behaviour”.
    Integr. Biol.
    vi
    (9): 817–830. doi:10.1039/c4ib00142g. ISSN 1757-9694. PMID 25058796.


  3. ^


    a




    b




    Chong, Poehere; Erable, Benjamin; Bergel, Alain (1 Dec 2021). “How bacteria employ electric fields to attain surfaces”.
    Biofilm.
    3: 100048. doi:10.1016/j.bioflm.2021.100048. ISSN 2590-2075. PMC8090995. PMID 33997766.



  4. ^


    Jaffe, Lionel; Vanable Jr., Joseph (1984). “Electric fields and wound healing”.
    Clinics in Dermatology.
    ii
    (iii): 34–44. doi:10.1016/0738-081X(84)90025-7. PMID 6336255.



  5. ^


    Nuccitelli, Richard (2003). “A role for endogenous electric fields in wound healing”.
    Electric current Topics in Developmental Biology.
    58
    (2): 1–24. doi:ten.1016/S0070-2153(03)58001-2. ISBN9780121531584. PMID 14711011.



  6. ^


    Carley, P. J.; Wainapel, Southward. F. (July 1985). “Electrotherapy for dispatch of wound healing: depression intensity direct current”.
    Archives of Physical Medicine and Rehabilitation.
    66
    (seven): 443–446. ISSN 0003-9993. PMID 3893385.



  7. ^


    Gault, W. R.; Gatens, P. F. (March 1976). “Employ of low intensity directly current in management of ischemic peel ulcers”.
    Physical Therapy.
    56
    (iii): 265–269. doi:10.1093/ptj/56.three.265. ISSN 0031-9023. PMID 1083031.



  8. ^


    Sven Olof Wikström, Paul Svedman, H (January 1999). “Effect of Transcutaneous Nerve Stimulation on Microcirculation in Intact Peel and Blister Wounds in Healthy Volunteers”.
    Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery.
    33
    (2): 195–201. doi:10.1080/02844319950159451. ISSN 0284-4311. PMID 10450577.



    {{cite journal}}: CS1 maint: multiple names: authors list (link)


  9. ^


    Zhao, Min; Penninger, Josef; Isseroff, Roslyn Rivkah (2010). “Electrical Activation of Wound-Healing Pathways”. In Sen, Chandan K. (ed.).
    Advances in Peel & Wound Care, Book 1. Mary Ann Liebert, Inc. pp. 567–573. doi:10.1089/9781934854013.567 (inactive 31 July 2022). ISBN978-1-934854-01-3. PMC3198837. PMID 22025904.



    {{cite book}}: CS1 maint: DOI inactive as of July 2022 (link)


  10. ^


    Yan, Xiaolong; Han, Jing; Zhang, Zhipei; Wang, Jian; Cheng, Qingshu; Gao, Kunxiang; Ni, Yunfeng; Wang, Yunjie (January 2009). “Lung cancer A549 cells migrate directionally in DC electric fields with polarized and activated EGFRs”.
    Bioelectromagnetics.
    30
    (1): 29–35. doi:10.1002/bem.20436. ISSN 1521-186X. PMID 18618607. S2CID 29927118.



  11. ^


    McCaig, Colin D.; Rajnicek, Ann Chiliad.; Vocal, Bing; Zhao, Min (July 2005). “Controlling cell beliefs electrically: current views and future potential”.
    Physiological Reviews.
    85
    (3): 943–978. doi:ten.1152/physrev.00020.2004. ISSN 0031-9333. PMID 15987799.



  12. ^


    Berthelot, Ryan; Doxsee, Kristina; Neethirajan, Suresh (29 June 2017). “Electroceutical Approach for Impairing the Movement of Pathogenic Bacterium Using a Microfluidic Platform”.
    Micromachines.
    8
    (7): 207. doi:10.3390/mi8070207. ISSN 2072-666X. PMC6189992. PMID 30400398.



  13. ^


    Verworn, Max (1889). “Dice polare Erregung der Protisten durch den galvanischen Strom”.
    Archiv für die gesamte Physiologie des Menschen und der Tiere.
    45
    (1): ane–36.



  14. ^


    Dineur, East (1891). “Note sur la sensibilité des leucocytes à l’électricité”.
    Bull. Séances Soc. Belge Microscopie.
    18: 113–118.



  15. ^


    McCaig, Colin; Rajnicek, Ann; Song, Bing; Zhao, Min (2005). “Controlling Cell Behavior Electrically: Current Views and Futurity Potential”.
    Physiological Reviews.
    85
    (three): 943–978. doi:ten.1152/physrev.00020.2004. PMID 15987799.



  16. ^


    Adler, J.; Shi, Westward. (1988). “Galvanotaxis in bacteria”.
    Cold Spring Harbor Symposia on Quantitative Biology. 53 Pt i: 23–25. doi:10.1101/sqb.1988.053.01.006. ISSN 0091-7451. PMID 3076081.



  17. ^


    Shi, Westward.; Stocker, B. A.; Adler, J. (February 1996). “Outcome of the surface composition of motile Escherichia coli and motile Salmonella species on the management of galvanotaxis”.
    Journal of Bacteriology.
    178
    (iv): 1113–1119. doi:10.1128/jb.178.4.1113-1119.1996. ISSN 0021-9193. PMC177773. PMID 8576046.



  18. ^


    Oram, Joseph; Jeuken, Lars J. C. (1 Oct 2017). “Shewanella oneidensis MR-1 electron acceptor taxis and the perception of electrodes poised at oxidative potentials”.
    Current Opinion in Electrochemistry.
    v
    (ane): 99–105. doi:ten.1016/j.coelec.2017.07.013. ISSN 2451-9103.



  19. ^


    Nealson, Thousand. H.; Moser, D. P.; Saffarini, D. A. (April 1995). “Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens”.
    Applied and Environmental Microbiology.
    61
    (4): 1551–1554. Bibcode:1995ApEnM..61.1551N. doi:10.1128/aem.61.4.1551-1554.1995. ISSN 0099-2240. PMC167410. PMID 11536689.



  20. ^


    Kim, Beum Jun; Chu, Injun; Jusuf, Sebastian; Kuo, Tiffany; TerAvest, Michaela A.; Angenent, Largus T.; Wu, Mingming (2016). “Oxygen Tension and Riboflavin Gradients Cooperatively Regulate the Migration of Shewanella oneidensis MR-1 Revealed by a Hydrogel-Based Microfluidic Device”.
    Frontiers in Microbiology.
    7: 1438. doi:10.3389/fmicb.2016.01438. ISSN 1664-302X. PMC5028412. PMID 27703448.



  21. ^


    Allen, 1000. G.; Mogilner, A.; Theriot, J. A. (April 2013). “Electrophoresis of Cellular Membrane Components Creates the Directional Cue Guiding Keratocyte Galvanotaxis”.
    Current Biological science.
    23
    (7): 560–568. doi:x.1016/j.cub.2013.02.047.


External links

[edit]


The dictionary definition of
electrotaxis
at Wiktionary

Baca :   Berikut Yang Termasuk Kalimat Baku Adalah



Galvanotaksis

Source: https://en.wikipedia.org/wiki/Electrotaxis

Check Also

Contoh Soal Perkalian Vektor

Contoh Soal Perkalian Vektor. Web log Koma – Setelah mempelajari beberapa operasi hitung pada vektor …