KlikBelajar.com – Faktor Persekutuan Dari 20 Dan 24 Adalah
Dalam matematika, khususnya teori bilangan, faktor persekutuan terbesar atau dikenal juga sebagai persekutuan bilangan terbesar (dilambangkan
[1]
atau
[2]
dalam bahasa Indonesia, dan
dalam bahasa Inggris, abreviasi dari kata
greatest common divisor
[3]) terhadap bilangan adalah bilangan bulat terbesar yang membagi setiap bilangan bulat. Sebagai contoh, diberikan bilangan bulat
dan
. Maka,
. Mengenai cara-cara dan metode akan dijelaskan di bawah.
Gagasan faktor persekutuan terbesar dapat diperluas melalui polinomial, lihat faktor persekutuan terbesar polinomial atau persekutuan bilangan terbesar polinomial untuk melihat lebih lanjut.
Daftar Isi:
- 1 Notasi [sunting | sunting sumber]
- 2 Definisi [sunting | sunting sumber]
- 3 Sifat [sunting | sunting sumber]
- 4 Contoh [sunting | sunting sumber]
- 5 Koprima [sunting | sunting sumber]
- 6 Penerapan [sunting | sunting sumber]
- 7 Algoritme Euklidean [sunting | sunting sumber]
- 8 Lihat pula [sunting | sunting sumber]
- 9 Rujukan [sunting | sunting sumber]
Notasi
[sunting
|
sunting sumber]
Untuk
dan
bilangan bulat sembarang, notasi faktor persekutuan terbesar dinotasikan sebagai
atau
. Dalam versi bahasa Inggris, dinotasikan sebagai
atau
. Ada beberapa penulisan notasi faktor persekutuan terbesar, yaitu
atau
.[4]
Definisi
[sunting
|
sunting sumber]
Misalkan
dan
adalah dua bilangan bulat yang diberikan. Misalkan
membagi
dan
dan
bilangan asli terbesar, maka faktor persekutuan terbesar terhadap bilangan bulat
dan
adalah[5]
-
.
Lebih umumnya lagi, untuk sebarang bilangan bulat
dan
bilangan asli terbesar yang membagi
, maka faktor persekutuan terbesarnya adalah[4]
-
.
Sifat
[sunting
|
sunting sumber]
![]() |
Bagian ini memerlukan |
Berikut adalah sifat-sifat faktor persekutuan terbesar, antara lain:
- Untuk sebarang bilangan bulat positif
, bila
membagi
dan
, maka
. - Untuk sebarang bilangan bulat positif
,
jika dan hanya jika
. - Untuk sebarang bilangan bulat positif
,
.
-
, sifat ini sangat penting dalam kalkulasi algoritme Euklides
Contoh
[sunting
|
sunting sumber]
Terdapat cara sederhana mengenai pencarian suatu faktor persekutuan terbesar terhadap dua bilangan. Sebagai contoh, kita ambil contoh bilangan bulat di atas sebelumnya, yakni
dan
. Untuk mengetahui mengapa
, kita perhatikan faktor-faktor dari kedua bilangan di bawah ini.
- Faktor dari
adalah
- Faktor dari
adalah
Karena faktor persekutuan terbesar dua bilangan adalah bilangan bulat terbesar yang membagi setiap bilangan bulat, maka kita simpulkan
. Terdapat cara lain untuk mengerjakan ini.
Pohon faktor
[sunting
|
sunting sumber]
Sebagai contoh, tinjau kedua bilangan di atas. Kita buatkan pohon faktor dari masing-masing bilangan:
12 20 /\ /\ 3 4 2 10 /\ /\ 2 2 2 5
Kita memperoleh
dan
, maka,
, di mana hasilnya adalah
.
Sebuah ubin dengan ukuran 24 kali 60, masing-masing dibagi menjadi ukuran yang sama, yang terbesar adalah 12 kali 12.
Visualisasi geometri
[sunting
|
sunting sumber]
Ada cara lain untuk mengetahui faktor persekutuan terbesar, yaitu melalui visualisasi geometri. Sebagai contoh, pada gambar di samping kanan, kita memperoleh ubin dengan ukuran 24 kali 60. Ubin tersebut kita bagi lagi menjadi 1 kali 1, 2 kali 2, 3 kali 3, 4 kali 4, 6 kali 6, dan terbesarnya adalah 12 kali 12. Jadi, 12 merupakan faktor persekutuan terbesar dari 24 dan 60, karena
dan
.
Koprima
[sunting
|
sunting sumber]
Dua buah bilangan dikatakan koprima, atau relatif prima, atau saling prima jika dan hanya jika faktor persekutuan terbesar dari kedua bilangan tersebut bernilai 1.[4]
Penerapan
[sunting
|
sunting sumber]
Menyederhanakan pecahan
[sunting
|
sunting sumber]
Salah satu penerapan terhadap faktor persekutuan terbesar adalah menyederhanakan pecahan[6]. Sebagai contoh, tinjau pecahan
. Kita dapat sederhanakan pecahan ini dengan menggunakan faktor persekutuan terbesar. Faktor persekutuan terbesar dari
dan
adalah
. Kita tuliskan sebagai
-
.
Kelipatan persekutuan terkecil
[sunting
|
sunting sumber]
Selain digunakan untuk menyederhanakan sebuah pecahan, faktor persekutuan terbesar juga dapat diterapkan dalam kelipatan persekutuan terkecil, di mana hubungan keduanya berkaitan dengan rumus berikut.
-
.[7]
Algoritme Euklidean
[sunting
|
sunting sumber]
Cara lain untuk mencari
FPB
adalah dengan menggunakan algoritme Euklidean. Misalkan a dan b adalah 2 bilangan bulat yang tidak sama, maka algoritme Euklidean adalah sebagai berikut:
-
- a1
= maximum(a,b)-minimum(a,b)
- b1
= minimum(a,b)
- a1
-
- a2
= maximum(a1,b1)-minimum(a1,b1)
- b2
= minimum(a1,b1)
- a2
-
-
- .
- .
- .
-
-
- ai
= maximum(ai-1,bi-1)-minimum(ai-1,bi-1)
- bi
= minimum(ai-1,bi-1)
- ai
Algoritme tersebut berhenti hingga diperoleh ai
= bi.
FPB dari a dan b adalah ai
= bi.
Algoritme ini dapat lebih jauh disederhanakan lagi dengan pembagian Euklidean, yang dideskripsikan sebagai berikut:
dengan
adalah operasi modulus.
Pencarian algoritme Euklid dengan pembagian memerlukan sekitar
pembagian.
Lihat pula
[sunting
|
sunting sumber]
- Kelipatan persekutuan terkecil (KPK)
Rujukan
[sunting
|
sunting sumber]
-
^
Itsnaini, Faqihah Muharroroh. “Apa Perbedaan KPK dan FPB? Ini Penjelasannya”.
detikedu
. Diakses tanggal
2021-11-14
.
-
^
Suci Yuniati, MENENTUKAN KELIPATAN PERSEKUTUAN TERKECIL (KPK) DAN FAKTOR PERSEKUTUAN TERBESAR (FPB) DENGAN MENGGUNAKAN METODE “PEBI”, hlm. 158 -
^
“Definition of greatest common divisor | Dictionary.com”.
www.dictionary.com
(dalam bahasa Inggris). Diakses tanggal
2021-11-14
.
-
^
a
b
c
Weisstein, Eric W. “Greatest Common Divisor”.
mathworld.wolfram.com
(dalam bahasa Inggris). Diakses tanggal
2021-11-20
.
-
^
“8.1: The Greatest Common Divisor”.
Mathematics LibreTexts
(dalam bahasa Inggris). 2017-09-20. Diakses tanggal
2021-11-21
.
-
^
“Greatest Common Factor”.
www.mathsisfun.com
. Diakses tanggal
2021-11-21
.
-
^
Weisstein, Eric W. “Least Common Multiple”.
mathworld.wolfram.com
(dalam bahasa Inggris). Diakses tanggal
2021-11-21
.
Faktor Persekutuan Dari 20 Dan 24 Adalah
Sumber: https://id.wikipedia.org/wiki/Faktor_persekutuan_terbesar