Faktor Faktor Persamaan Suku Banyak X3 Px2 3x Q 0

Faktor Faktor Persamaan Suku Banyak X3 Px2 3x Q 0

Pada kesempatan ini ID-KU membahas tentang “Soal dan Pembahasan Teorema Faktor Suku Banyak”. Teorema faktor menyatakan bahwa: Jika f(x) suatu suku banyak, maka (x – k) merupakan faktor dari f(x) jika dan hanya jika f(k) = 0.


Soal dan Pembahasan Teorema Faktor Suku Banyak


Soal


Suku banyak f(x) = 3x³ – 13x² + 8x + 12 dapat dinyatakan dalam bentuk perkalian faktor-faktor linearnya menjadi…..
A. f(x) = (x +  2)(3x + 2)(x – 3)
B. f(x) = (x –  2)(3x – 2)(x – 3)
C. f(x) = (x –  2)(3x + 2)(x – 3)
D. f(x) = (x +  2)(3x – 2)(x + 3)
E. f(x) = (x +  2)(3x + 2)(x + 3)



Pembahasan:

f(x) = 3x³ – 13x² + 8x + 12, suku tetapnya adalah a₀ = 12
Nilai-nilai k yang mungkin adalah faktor bulat dari a₀ = 12, yaitu ±1, ±2, ±3, ±4, ±6, ±12.
* Untuk k = 1, diperoleh:
f(1) = 3(1)³ – 13(1)² + 8(1) + 12
= 3 – 13 + 8 + 12
= 10
Karena f(1) = 10 ≠ 0, maka (x – 1) bukan faktor dari f(x).
* Untuk k = -1,diperoleh:
f(-1) = 3(-1)³ – 13(-1)² + 8(-1) + 12
= -3 – 13 – 8 + 12
= -12
Karena f(-1) ≠ 0, maka (x + 1) bukan faktor dari f(x).
* Untuk k = 2,  diperoleh:
f(2) = 3(2)³ – 13(2)² + 8(2) + 12
= 24 – 52 + 16 + 12
= 0
Karena f(2) = 0, maka (x – 2) faktor dari f(x).
Faktor-faktor f(x) yang lain dapat ditentukan dari hasil bagi suku banyak f(x) oleh (x – 2). Dengan menggunakan metode sintetik, maka:

Hasil baginya adalah 3x² – 7x – 6 dan dapat difaktorkan menjadi (3x + 2)(x -3).
Jadi, suku banyak f(x) dapat dinyatakan dalam bentuk perkalian faktor-faktor linear sebagai:
f(x) = (x –  2)(3x + 2)(x – 3)
(JAWABAN: C)

Baca :   Ion Yang Menyebabkan Kesadahan Air Adalah


Soal


Salah satu faktor dari (2x³ + px² – 10x – 24) ialah (x + 4). Faktor-faktor lainnya adalah …..
A. (2x + 1) dan (x + 2)
B. (2x + 3) dan (x + 2)
C. (2x – 3) dan (x + 2)
D. (2x – 3) dan (x – 2)
E. (2x + 3) dan (x – 2)



Pembahasan:

Misalkan f(x) = 2x³ + px² – 10x – 24
Karena (x + 4) adalah faktor dari f(x), maka f(-4) = 0.
f(-4) = 0
<=> 2(-4)³ + p(-4)² – 10(-4) – 24 = 0
<=> -128 + 16p + 40 – 24  = 0
<=> -112 + 16p = 0
<=> 16p = 112
<=> p = 112/16
<=> p = 7
Dengan demikian, f(x) = 2x³ + 7x² – 10x – 24
Faktor-faktor f(x) yang lain dapat ditentukan dari hasil bagi suku banyak f(x) oleh (x + 4). Dengan menggunakan metode sintetik, maka:

Hasil baginya adalah 2x² – x – 6 dan dapat difaktorkan menjadi (2x + 3)(x -2).
(JAWABAN: E)


Soal


Salah satu faktor dari (2x³ – 5x² – px + 3) adalah (x + 1). Faktor linear yang lain dari suku banyak tersebut adalah …..
A. (x – 2) dan (x – 3)
B. (x + 2) dan (2x – 1)
C. (x + 3) dan (x + 2)
D. (2x + 1) dan (x – 2)
E. (2x – 1) dan (x – 3)



Pembahasan:

Misalkan f(x) = 2x³ – 5x² – px + 3
Karena (x +1) adalah faktor dari f(x), maka f(-1) = 0
f(-1) = 0
2(-1)³ – 5(-1)² – p(-1) + 3 = 0
<=> -2 – 5 + p + 3 = 0
<=> -4 + p = 0
<=> p = 4
Dengan demikian f(x) = 2x³ – 5x² – 4x + 3
Faktor-faktor f(x) yang lain dapat ditentukan dari hasil bagi suku banyak f(x) oleh (x + 1). Dengan menggunakan metode sintetik, maka:

Baca :   Mata Uang Dari Rp 50 Garis Tengahnya Adalah

Hasil baginya adalah 2x² – 7x + 3 dan dapat difaktorkan menjadi (2x – 1)(x – 3).
(JAWABAN: E)


Soal


Salah satu faktor dari p(x) = x³ + kx² – x – 2 adalah x + 2. Salah satu faktor linearnya dari p(x) adalah…..
A. x – 1
B. x – 2
C. x – 3
D. x + 3
E. x + 4



Pembahasan:

Karena (x + 2) adalah faktor dari p(x), maka p(-2) = 0.
p(-2) = 0
(-2)³ + k(-2)² – (-2) – 2 = 0
<=> -8 + 4k + 2 – 2 = 0
<=> 4k = 8
<=> k = 8/4
<=> k = 2
Dengan demikian p(x) = x³ + 2x² – x – 2.
Faktor-faktor f(x) yang lain dapat ditentukan dari hasil bagi suku banyak p(x) oleh (x + 2). Dengan menggunakan metode sintetik, maka:

Hasil baginya adalah x² – 1 dan dapat difaktorkan menjadi (x – 1)(x + 1).
Jadi, salah satu faktor linear dari p(x) adalah (x – 1)
(JAWABAN: A)





Soal


Suku banyak 6x³ + 13x² + qx + 12 mempunyai faktor (3x – 1). Faktor linear lainnya adalah…..
A. 2x – 1
B. 2x + 3
C. x – 4
D. x + 4
E. x + 2



Pembahasan:

Misalkan f(x) = 6x³ + 13x² + qx + 12
Karena (3x – 1) faktor dari f(x) maka f(⅓) = 0
f(⅓) = 0
6(⅓)³ + 13(⅓)² + q(⅓) + 12 = 0
6($\frac{1}{27}$) + 13($\frac{1}{9}$) + $\frac{q}{3}$ + 12 = 0
<=> $\frac{6}{27}$ + $\frac{39}{27}$ + $\frac{9q}{27}$ = -12
<=> $\frac{6+39+9q}{27}$ = -12
<=> 6 + 39 + 9q = -12 x 27
<=> 45 + 9q = -324
<=> 9q = -324 – 45
<=> 9q = -369
<=> q = -369/9
<=> q = -41
Dengan demikian f(x) = 6x³ + 13x² – 41x + 12
Faktor-faktor f(x) yang lain dapat ditentukan dari hasil bagi suku banyak p(x) oleh (3x – 1). Dengan menggunakan metode sintetik, maka:

Hasil baginya adalah 6x² + 15x – 36 dan dapat difaktorkan menjadi 3(2x – 3)(x + 4).
Jadi, faktor linear lainnya adalah (x + 4).
(JAWABAN: D)

Baca :   Tendangan Bebas Dalam Permainan Sepak Bola


Soal



Persamaan 2x³ + px² + 7x + 6 = 0 mempunyai akar x = 2. Jumlah ketiga akar persamaan itu adalah…..
A. -9
B. 2½
C. 3
D. 4½
E. 9



Pembahasan:

Misalkan f(x) = 2x³ + px² + 7x + 6
Karena x = 2 adalah akar dari f(x), maka f(2) = 0 .
f(2) = 0
2(2)³ + p(2)² + 7(2) + 6 = 0
16 + 4p + 14 + 6 = 0
36 + 4p = 0
4p  = -36
p = -36/4
p = -9
Dengan demikian f(x) = 2x³ – 9x² + 7x + 6.
Akar-akar f(x) yang lain dapat ditentukan dari hasil bagi suku banyak f(x) oleh (x – 2). Dengan menggunakan metode sintetik, maka:

Hasil baginya adalah 2x² – 5x – 3 dan dapat difaktorkan menjadi (2x + 1)(x – 3).
Jadi, suku banyak f(x) dapat dinyatakan dalam bentuk perkalian faktor-faktor linear sebagai:
f(x) = (x –  2)(2x + 1)(x – 3) = 0
x₁ = 2, x₂ = -½, x₃ = 3
Jumlah ketiga akar = 2 + (-½) + 3 = 4½
(JAWABAN: D)

Faktor Faktor Persamaan Suku Banyak X3 Px2 3x Q 0

Sumber: https://www.ruangsoal.id/2018/07/soal-dan-pembahasan-teorema-faktor-suku.html

Check Also

Harga Beras 10 Kg Di Pasar

Harga Beras 10 Kg Di Pasar 4 menit Kamu pasti sudah sering sekali mendengar ungkapan, …