Bentuk Sederhana Nilai Mutlak X 5 X 3

KlikBelajar.com – Bentuk Sederhana Nilai Mutlak X 5 X 3



Pada postingan ini Catatan Matematika berbagi materi yaitu: Definisi Nilai Mutlak, Sifat-sifat Nilai Mutlak, dan Persamaan Nilai Mutlak beserta contoh soal dan pembahasannya, juga soal latihan.
Materi ini juga disajikan dalam bentuk video, klik
DISINI.

A. Definisi Nilai Mutlak

Nilai mutlak dari sebuah bilangan dapat didefinisikan sebagai jarak bilangan tersebut terhadap titik 0 (nol) pada garis bilangan.
Perhatikan gambar garis bilangan berikut:
Definisi Nilai Mutlak dan Persamaan Nilai Mutlak

Nilai mutlak dari 3 ditulis |3| yaitu 3 (jarak bilangan 3 dari 0 yaitu 3 unit).
Nilai mutlak dari -3 ditulis |-3| yaitu 3 (jarak bilangan -3 dari 0 yaitu 3 unit).

Dari penjelasan di atas dapat kita tuliskan definisi nilai mutlak secara umum sebagai berikut:
$|x|=\left\{ \begin{align} x, \, &x \ge 0 \\ -x, \, &x < 0 \end{align} \right.$

Contoh:

1. $|-5|=-(-5)=5$
2. $|7|=7$
3. $|-20|=20$
4. $|30|=30$

B. Sifat-sifat Nilai Mutlak

1. $|x| \ge 0$, untuk setiap bilangan real $x$.
2. $|x+y| \le |x|+|y|$, untuk setiap bilangan real $x$.
3. $|x-y| \ge |x|-|y|$, untuk setiap bilangan real $x$ dan $y$.
4. $|x| = \sqrt{x^2}$.
5. $|x|^2 = x^2$.
6. $|x.y|=|x|.|y|$
7. $\left| \frac{x}{y} \right|=\frac{|x|}{|y|}$ , untuk $x,y\in R$ dan $y\ne 0$.

C. Persamaan Nilai Mutlak

1. Jika $|f(x)|=a$, maka $f(x)=a$ atau $f(x)=-a$.
2. Jika $|f(x)|=|g(x)|$, maka $f(x)=g(x)$ atau $f(x)=-g(x)$.
3. Jika $|f(x)|=g(x)$, maka:
i) $f(x)=g(x)$ dengan syarat $f(x)\ge 0$.
ii) $f(x)=-g(x)$ dengan syarat $f(x) < 0$.

Contoh 1.

Tentukan himpunan penyelesaian dari $|2x+11|=6$.
Penyelesaian:

$|2x+11|=6$ memenuhi bentuk $|f(x)|=a$ maka dengan $f(x)=2x+11$ dan $a=6$ maka solusinya adalah:
$f(x)=a$ atau $f(x)=-a$
$\begin{align}f(x) &=a \\ 2x+11 &=6 \\ 2x &=6-11 \\ 2x &=-5 \\ x &=-\frac{5}{2} \end{align}$
atau
$\begin{align}f(x) &=-a \\ 2x+11 &=-6 \\ 2x &=-6-11 \\ 2x &=-17 \\ x &=-\frac{17}{2} \end{align}$
HP = $\left\{ -\frac{17}{2},-\frac{5}{2} \right\}$

Baca :   Median Dari Data Di Bawah Ini Adalah

Contoh 2.

Tentukan himpunan penyelesaian dari $|x+2|-3=4$
Penyelesaian:

$\begin{align}\left| x+2 \right|-3 &=4 \\ \left| x+2 \right| &=7 \end{align}$
Memenuhi bentuk $|f(x)|=a$, dimana $f(x)=x+2$ dan $a=7$ maka solusinya adalah:
$f(x)=a$ atau $f(x)=-a$
$\begin{align}f(x) &=a \\ \left| x+2 \right| &=7 \\ x+2 &=7 \\ x &=7-2 \\ x &=5 \end{align}$
atau

$\begin{align} f(x) &=-a \\ x+2 &=-7 \\ x &=-7-2 \\ x &=-9 \end{align}$
HP = {-9, 5}

Contoh 3.

Tentukan himpunan penyelesaian dari $3|x+2|-5=|x+2|+7$.
Penyelesaian:

$\begin{align}3\left| x+2 \right|-5 &=\left| x+2 \right|+7 \\ 3\left| x+2 \right|-\left| x+2 \right| &=7+5 \\ 2\left| x+2 \right| &=12 \\ \left| x+2 \right| &=6 \end{align}$
$|x+2|=6$ memenuhi bentuk $|f(x)|=a$, dimana $f(x)=x+2$ dan $a=6$, maka solusinya adalah:
$f(x)=a$ atau $f(x)=-a$
$\begin{align}f(x) &=a \\ x+2 &=6 \\ x &=6-2 \\ x &=4 \end{align}$
atau
$\begin{align}f(x) &=-a \\ x+2 &=-6 \\ x &=-6-2 \\ x &=-8 \end{align}$
HP = {-8, 4}

Contoh 4.

Tentukan himpunan penyelesaian dari $\left| \frac{x}{3}-\frac{1}{4} \right|=\frac{1}{12}$
Penyelesaian:

$\begin{align}\left| \frac{x}{3}-\frac{1}{4} \right| &=\frac{1}{12} \\ \left| \frac{4x-3}{12} \right| &=\frac{1}{12} \\ \frac{\left| 4x-3 \right|}{12} &=\frac{1}{12} \\ \left| 4x-3 \right| &=1 \end{align}$
$|4x-3|=1$ memenuhi bentuk $|f(x)|=a$, dimana $f(x)=4x-3$ dan $a=1$, maka solusinya adalah:
$f(x)=a$ atau $f(x)=-a$
$\begin{align}f(x) &=a \\ 4x-3 &=1 \\ 4x &=1+3 \\ 4x &=4 \\ x &=1 \end{align}$
atau
$\begin{align}f(x) &=-a \\ 4x-3 &=-1 \\ 4x &=-1+3 \\ 4x &=2 \\ x &=\frac{2}{4} \\ x &=\frac{1}{2} \end{align}$
HP = $\left\{ \frac{1}{2},1 \right\}$

Contoh 5.

Tentukan nilai $x$ yang memenuhi persamaan $|2x-5|=|x+1|$
Penyelesaian:

$\begin{align}\left| 2x-5 \right| &=\left| x+1 \right| \\ \left| f(x) \right| &=\left| g(x) \right| \end{align}$
maka:
$f(x)=g(x)$ atau $f(x)=-g(x)$
$\begin{align}f(x) &=g(x) \\ 2x-5 &=x+1 \\ 2x-x &=1+5 \\ x &=6 \end{align}$
atau
$\begin{align}f(x) &=-g(x) \\ 2x-5 &=-(x+1) \\ 2x-5 &=-x-1 \\ 2x+x &=-1+5 \\ 3x &=4 \\ x &=\frac{4}{3} \end{align}$

Contoh 6.

Tentukan himpunan penyelesaian dari $|x+2|=\left| \frac{1}{3}x+5 \right|$.
Penyelesaian:

$\begin{align}\left| x+2 \right| &=\left| \frac{1}{3}x+5 \right| \\ \left| f(x) \right| &=\left| g(x) \right| \\ \end{align}$
Maka solusinya adalah:
$f(x)=g(x)$ atau $f(x)=-g(x)$
$\begin{align}f(x) &=g(x) \\ x+2 &=\frac{1}{3}x+5 \\ 3x+6 &=x+15 \\ 3x-x &=15-6 \\ 2x &=9 \\ x &=\frac{9}{2} \end{align}$
atau
$\begin{align}f(x) &=-g(x) \\ x+2 &=-\left( \frac{1}{3}x+5 \right) \\ x+2 &=-\frac{1}{3}x-5 \\ 3x+6 &=-x-15 \\ 3x+x &=-15-6 \\ 4x &=-21 \\ x &=-\frac{21}{4} \end{align}$
HP = $\left\{ -\frac{21}{4},\frac{9}{2} \right\}$

Baca :   Menjelang Hari Raya Idul Adha Pak Mahmud

Contoh 7.

Tentukan himpunan penyelesaian dari $|x-2|=\frac{1}{3}x+2$.
Penyelesaian:

$\begin{align}\left| x-2 \right| &=\frac{1}{3}x+2 \\ \left| f(x) \right| &=g(x) \\ \end{align}$
Maka solusinya adalah:
$f(x)=g(x)$ atau $f(x)=-g(x)$ dengan syarat $g(x)\ge 0$.
Kita tentutukan terlebih dahulu syaratnya:
$\begin{align}g(x) &\ge 0 \\ \frac{1}{3}x+2 & \ge 0 \\ \frac{1}{3}x & \ge -2 \\ x & \ge -6 \end{align}$
Solusi:
$\begin{align}f(x) &=g(x) \\ x-2 &=\frac{1}{3}x+2 \\ 3x-6 &=x+6 \\ 3x-x &=6+6 \\ 2x &=12 \\ x &=6\,(memenuhi\,syarat\,x\ge -6) \end{align}$
$\begin{align}f(x) &=-g(x) \\ x-2 &=-\left( \frac{1}{3}x+2 \right) \\ x-2 &=-\frac{1}{3}x-2 \\ 3x-6 &=-x-6 \\ 3x+x &=-6+6 \\ 4x &=0 \\ x &=0\,(memenuhi\,syarat\,x\ge -6) \end{align}$
HP = {0, 6}

Contoh 8.

Tentukan himpunan penyelesaian dari $|5x+10|=-|3x+6|$.
Penyelesaian:

$|5x+10|=-|3x+6|$
Tidak ada nilai x yang memenuhi persamaan, karena hasil nilai mutlak tidak pernah negatif.
HP = { }

Contoh 9.

Tentukan himpunan penyelesaian dari $|2x+4|-|3-x|=3$.
Penyelesaian:

$|2x+4|-|3-x|=3$
Definisi nilai mutlak:
$|2x+4|=\left\{ \begin{align} 2x+4, \, & untuk \, x \ge -2 \\ -2x-4, \, & untuk \, x < -2 \end{align} \right.$
$|3-x|=\left\{ \begin{align} 3-x,\, & untuk \, x \le 3 \\ -3+x,\, & untuk \, x > 3 \end{align} \right.$
Berdasarkan syarat (interval nilai x) yang diberikan, kita dapat menyelesaikannya dengan tiga kasus, yaitu:
i) untuk $x<-2$ maka:
$\begin{align}\left| 2x+4 \right|-\left| 3-x \right| &=3 \\ (-2x-4)-(3-x) &=3 \\ -2x-4-3+x &=3 \\ -x &=10 \\ x &=-10 \end{align}$
ii) untuk $-2\le x\le 3$ maka:
$\begin{align}\left| 2x+4 \right|-\left| 3-x \right| &=3 \\ (2x+4)-(3-x) &=3 \\ 2x+4-3+x &=3 \\ 3x &=2 \\ x &=\frac{2}{3} \end{align}$
iii) untuk $x>3$ maka:
$\begin{align}\left| 2x+4 \right|-\left| 3-x \right| &=3 \\ (2x+4)-(-3+x) &=3 \\ 2x+4+3-x &=3 \\ x &=-4 \end{align}$
$x=-4$ tidak memenuhi syarat $x>3$.
Jadi, himpunan penyelesaiannya adalah $\left\{ -10,\frac{2}{3} \right\}$

Baca :   Mengganti Kapasitor Dengan Nilai Lebih Besar

Contoh 10.

Tentukan penyelesaian dari persamaan $|x|+|x-2|+|x-4|=6$.
Penyelesaian:

$|x|+|x-2|+|x-4|=6$
Definisi Nilai Mutlak:
$|x|=\left\{ \begin{align} x,\,& untuk\,x\ge 0 \\ -x,\, & untuk\,x<0 \end{align} \right.$
$|x-2|=\left\{ \begin{align} x-2,\, & untuk\,x\ge 2 \\ -x+2,\, & untuk\,x<2 \end{align} \right.$
$|x-4|=\left\{ \begin{align}x-4,\, & untuk\,x\ge 4 \\ -x+4,\, & untuk\,x<4 \end{align} \right.$
Berdasarkan syarat (interval nilai x) yang diberikan, kita dapat menyelesaikannya dengan empat kasus, yaitu:
i) untuk $x<0$ maka:
$\begin{align}\left| x \right|+\left| x-2 \right|+\left| x-4 \right| &=6 \\ -x+(-x+2)+(-x+4) &=6 \\ -3x &=0 \\ x &=0 \end{align}$
ii) untuk $0\le x<2$ maka:
$\begin{align}\left| x \right|+\left| x-2 \right|+\left| x-4 \right| &=6 \\ x+(-x+2)+(-x+4) &=6 \\ -x &=0 \\ x &=0 \end{align}$
iii) untuk $2\le x<4$ maka:
$\begin{align}\left| x \right|+\left| x-2 \right|+\left| x-4 \right| &=6 \\ x+(x-2)+(-x+4) &=6 \\ x &=4 \end{align}$
iv) untuk $x\ge 4$ maka:
$\begin{align}\left| x \right|+\left| x-2 \right|+\left| x-4 \right| &=6 \\ x+(x-2)+(x-4) &=6 \\ 3x &=12 \\ x &=4 \end{align}$
HP = $\{0,4\}$

D. Soal Latihan

Tentukan himpunan penyelesaian dari persamaan nilai mutlak berikut ini!

  1. $\left| 4-3x \right|=\left| -4 \right|$
  2. $2\left| 3x-8 \right|=10$
  3. $\left| x^2 + x – 1 \right|=1$
  4. $\left| 2y+5 \right|=\left| 7-2y \right|$
  5. $5\left| 2x-3 \right|=2\left| 3-5x \right|$
  6. $\left| 7x+2 \right|=3x-6$
  7. $2x+\left| 3x-8 \right|=-4$
  8. $2x+\left| 8-3x \right|=\left| x-4 \right|$
  9. $\left| x-1 \right|+\left| 2x \right|+\left| 3x+1 \right|=6$
  10. $2{\left| x+4 \right|}^2-7\left| x+4 \right|+3=0$

By:
Catatan Matematika

Semoga postingan:

Definisi Nilai Mutlak dan Persamaan Nilai Mutlak

ini bisa bermanfaat. Mohon keikhlasan hatinya, membagikan postingan ini di media sosial
bapak/ibu guru
dan adik-adik sekalian. Terima kasih.


Dapatkan Update terbaru, subscribe channel kami:

Youtube
Facebook
Instagram
Twitter
Telegram
Pinterest

Bentuk Sederhana Nilai Mutlak X 5 X 3

Sumber: https://www.catatanmatematika.com/2021/07/definisi-nilai-mutlak-dan-persamaan-nilai-mutlak.html

Check Also

Contoh Soal Perkalian Vektor

Contoh Soal Perkalian Vektor. Web log Koma – Setelah mempelajari beberapa operasi hitung pada vektor …